22 resultados para Flow distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an analysis of the stability of complex distribution networks. We present a stability analysis against cascading failures. We propose a spin [binary] model, based on concepts of statistical mechanics. We test macroscopic properties of distribution networks with respect to various topological structures and distributions of microparameters. The equilibrium properties of the systems are obtained in a statistical mechanics framework by application of the replica method. We demonstrate the validity of our approach by comparing it with Monte Carlo simulations. We analyse the network properties in terms of phase diagrams and found both qualitative and quantitative dependence of the network properties on the network structure and macroparameters. The structure of the phase diagrams points at the existence of phase transition and the presence of stable and metastable states in the system. We also present an analysis of robustness against overloading in the distribution networks. We propose a model that describes a distribution process in a network. The model incorporates the currents between any connected hubs in the network, local constraints in the form of Kirchoff's law and a global optimizational criterion. The flow of currents in the system is driven by the consumption. We study two principal types of model: infinite and finite link capacity. The key properties are the distributions of currents in the system. We again use a statistical mechanics framework to describe the currents in the system in terms of macroscopic parameters. In order to obtain observable properties we apply the replica method. We are able to assess the criticality of the level of demand with respect to the available resources and the architecture of the network. Furthermore, the parts of the system, where critical currents may emerge, can be identified. This, in turn, provides us with the characteristic description of the spread of the overloading in the systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water as a low-cost tertiary wastewater treatment for rural locations. Experience has shown that clogging is a major operational problem that reduces HSSF TW lifetime. Clogging is caused by an accumulation of secondary wastewater solids from upstream processes and decomposing leaf litter. Clogging occurs as a sludge layer where wastewater is loaded on the surface of the bed at the inlet. Severn Trent systems receive relatively high hydraulic loading rates, which causes overland flow and reduces the ability to mineralise surface sludge accumulations. A novel apparatus and method, the Aston Permeameter, was created to measure hydraulic conductivity in situ. Accuracy is ±30 %, which was considered adequate given that conductivity in clogged systems varies by several orders of magnitude. The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in the UK and the US. The minimum conductivity measured was 0.03 m/d at Fenny Compton (compared with 5,000 m/d clean conductivity), which was caused by an accumulation of construction fines in one part of the bed. Most systems displayed a 2 to 3 order of magnitude variation in conductivity in each dimension. Statistically significant transverse variations in conductivity were found in 70% of the systems. Clogging at the inlet and outlet was generally highest where flow enters the influent distribution and exits the effluent collection system, respectively. Surface conductivity was lower in systems with dense vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge mineralisation. An equation was derived to describe how the water table profile is influenced by overland flow, spatial variations in conductivity and clogging. The equation is calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent loss of porosity that would reproduce measured conductivity according to the Kozeny-Carman Equation. The CF varies from 0 for ideal conditions to 1 for completely clogged conditions. Minimum CF was 0.54 for a system that had recently been refurbished, which represents the deviation from ideal conditions due to characteristics of non-ideal media such as particle size distribution and morphology. Maximum CF was 0.90 for a 15 year old system that exhibited sludge accumulation and overland flow across the majority of the bed. A Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and hydrodynamics vary as CF increases. It was found that as CF increases from 0.55 to 0.65 the subsurface wetted area increases, which causes mean hydraulic residence time to increase from 0.16 days to 0.18 days. As CF increases from 0.65 to 0.90, the extent of overland flow increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and reduces mean residence time to 0.08 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. Scope of review - AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions - AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance - Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 165 induction times of butyl paraben-ethanol solution in a batch moving fluid oscillation baffled crystallizer with various amplitudes (1-9 mm) and frequencies (1.0-9.0 Hz) have been determined to study the effect of COBR operating conditions on nucleation. The induction time decreases with increasing amplitude and frequency at power density below about 500 W/m3; however, a further increase of the frequency and amplitude leads to an increase of the induction time. The interfacial energies and pre-exponential factors in both homogeneous and heterogeneous nucleation are determined by classical nucleation theory at oscillatory frequency 2.0 Hz and amplitudes of 3 or 5 mm both with and without net flow. To capture the shear rate conditions in oscillatory flow crystallizers, a large eddy simulation approach in a computational fluid dynamics framework is applied. Under ideal conditions the shear rate distribution shows spatial and temporal periodicity and radial symmetry. The spatial distributions of the shear rate indicate an increase of average and maximum values of the shear rate with increasing amplitude and frequency. In continuous operation, net flow enhances the shear rate at most time points, promoting nucleation. The mechanism of the shear rate influence on nucleation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clogging is a major operational and maintenance issue associated with the use of subsurface flow wetlands for wastewater treatment, and can ultimately limit the lifetime of the system. This review considers over two decades of accumulated knowledge regarding clogging in both vertical and horizontal subsurface flow treatment wetlands. The various physical, chemical and biological factors responsible for clogging are identified and discussed. The occurrence of clogging is placed into the context of various design and operational parameters such as wastewater characteristics, upstream treatment processes, intermittent or continuous operation, influent distribution, and media type. This information is then used to describe how clogging develops within, and subsequently impacts, common variants of subsurface flow treatment wetland typically used in the U.S., U.K., France and Germany. Comparison of these systems emphasized that both hydraulic loading rate and solids loading rate need to be considered when designing systems to operate robustly, i.e. hydraulic overloading makes horizontal-flow tertiary treatment systems in the U.K. more susceptible to clogging problems than vertical-flow primary treatment systems in France. Future research should focus on elucidating the underlying mechanisms of clogging as they relate to the design, operation, and maintenance of subsurface flow treatment wetlands. © 2010 Elsevier B.V.