40 resultados para Finite elements methods, Radial basis function, Interpolation, Virtual leaf, Clough-Tocher method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of researchers have investigated the impact of network architecture on the performance of artificial neural networks. Particular attention has been paid to the impact on the performance of the multi-layer perceptron of architectural issues, and the use of various strategies to attain an optimal network structure. However, there are still perceived limitations with the multi-layer perceptron and networks that employ a different architecture to the multi-layer perceptron have gained in popularity in recent years, particularly, networks that implement a more localised solution, where the solution in one area of the problem space does not impact, or has a minimal impact, on other areas of the space. In this study, we discuss the major architectural issues affecting the performance of a multi-layer perceptron, before moving on to examine in detail the performance of a new localised network, namely the bumptree. The work presented here examines the impact on the performance of artificial neural networks of employing alternative networks to the long established multi-layer perceptron. In particular, networks that impose a solution where the impact of each parameter in the final network architecture has a localised impact on the problem space being modelled are examined. The alternatives examined are the radial basis function and bumptree neural networks, and the impact of architectural issues on the performance of these networks is examined. Particular attention is paid to the bumptree, with new techniques for both developing the bumptree structure and employing this structure to classify patterns being examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential framework for inference in such projected processes is presented, where the observations are considered one at a time. We introduce a C++ library for carrying out such projected, sequential estimation which adds several novel features. In particular we have incorporated the ability to use a generic observation operator, or sensor model, to permit data fusion. We can also cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the variogram parameters is based on maximum likelihood estimation. We illustrate the projected sequential method in application to synthetic and real data sets. We discuss the software implementation and suggest possible future extensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this thesis is the n-tuple net.work (RAMnet). The major advantage of RAMnets is their speed and the simplicity with which they can be implemented in parallel hardware. On the other hand, this method is not a universal approximator and the training procedure does not involve the minimisation of a cost function. Hence RAMnets are potentially sub-optimal. It is important to understand the source of this sub-optimality and to develop the analytical tools that allow us to quantify the generalisation cost of using this model for any given data. We view RAMnets as classifiers and function approximators and try to determine how critical their lack of' universality and optimality is. In order to understand better the inherent. restrictions of the model, we review RAMnets showing their relationship to a number of well established general models such as: Associative Memories, Kamerva's Sparse Distributed Memory, Radial Basis Functions, General Regression Networks and Bayesian Classifiers. We then benchmark binary RAMnet. model against 23 other algorithms using real-world data from the StatLog Project. This large scale experimental study indicates that RAMnets are often capable of delivering results which are competitive with those obtained by more sophisticated, computationally expensive rnodels. The Frequency Weighted version is also benchmarked and shown to perform worse than the binary RAMnet for large values of the tuple size n. We demonstrate that the main issues in the Frequency Weighted RAMnets is adequate probability estimation and propose Good-Turing estimates in place of the more commonly used :Maximum Likelihood estimates. Having established the viability of the method numerically, we focus on providillg an analytical framework that allows us to quantify the generalisation cost of RAMnets for a given datasetL. For the classification network we provide a semi-quantitative argument which is based on the notion of Tuple distance. It gives a good indication of whether the network will fail for the given data. A rigorous Bayesian framework with Gaussian process prior assumptions is given for the regression n-tuple net. We show how to calculate the generalisation cost of this net and verify the results numerically for one dimensional noisy interpolation problems. We conclude that the n-tuple method of classification based on memorisation of random features can be a powerful alternative to slower cost driven models. The speed of the method is at the expense of its optimality. RAMnets will fail for certain datasets but the cases when they do so are relatively easy to determine with the analytical tools we provide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An initial review of the subject emphasises the need for improved fuel efficiency in vehicles and the possible role of aluminium in reducing weight. The problems of formability generally in manufacture and of aluminium in particular are discussed in the light of published data. A range of thirteen commercially available sheet aluminium alloys have been compared with respect to mechanical properties as these affect forming processes and behaviour in service. Four alloys were selected for detailed comparison. The formability and strength of these were investigated in terms of underlying mechanisms of deformation as well as the microstructural characteristics of the alloys including texture, particle dispersion, grain size and composition. In overall terms, good combinations of strength and ductility are achievable with alloys of the 2xxx and 6xxx series. Some specific alloys are notably better than others. The strength of formed components is affected by paint baking in the final stages of manufacture. Generally, alloys of the 6xxx family are strengthened while 2xxx and 5xxx become weaker. Some anomalous behaviour exists, however. Work hardening of these alloys appears to show rather abrupt decreases over certain strain ranges which is probably responsible for the relatively low strains at which both diffuse and local necking occur. Using data obtained from extended range tensile tests, the strain distribution in more complex shapes can be successfully modelled using finite element methods.Sheet failure during forming occurs by abrupt shear fracture in many instances. This condition is favoured by states of biaxial tension, surface defects in the form of fine scratches and certain types of crystallographic texture. The measured limit strains of the materials can be understood on the basis of attainment of a critical shear stress for fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human accommodation system has been extensively examined for over a century, with a particular focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age (Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed; hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that can be used to provide insight into this complex area is Finite Element Analysis (FEA). The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of accommodative FEA models developed to date. However, there have been limitations to these previous models; principally due to the variation in data on the geometry of the accommodative components, combined with sparse measurements of their material properties. Despite advances in available data, continued oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that surround the lens. A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel representation of the zonular structure was developed, combined with updated lens and capsule modelling methods. The model has been designed to be adaptable so that a range of different age accommodation systems can be modelled, allowing the age related changes that occur to be simulated. The new modelling methods were validated by comparing the changes induced within the model to available in vivo data, leading to the definition of three different age models. These were used in an extended sensitivity study on age related changes, where individual parameters were altered to investigate their effect on the accommodative process. The material properties were found to have the largest impact on the decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular structure. Novel data on the importance of the capsule stiffness and thickness was also established. The new model detailed within this thesis provides further insight into the accommodation mechanism, as well as a foundation for future, more detailed investigations into accommodation, presbyopia and accommodative restoration techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary purpose of boundary spanning has been the information exchange between the organization and its task-environment. With complex, global organizational structures and increased emphasis on outsourcing, organizations today are susceptible to degenerate into ‘silos’ and in turn hampering the synergy and efficiency. Boundary spanning research becomes critical to answer some emerging questions in this area. Organization theorists have considered the boundary spanning construct an important one that explains the boundaries of an organization, inter organizational exchanges, dependence and in general, the concept of an organization. The research in this area seems to fall in two broad streams viz., Organization focused, dealing with issues pertaining to organization system, network, learning and collaboration and Individual focused, exploring issues of actors—and their attitudes, behavior—that traverse the boundaries of organization such as sales person, service workers and public servants. This chapter introduces nine interesting research studies presented in the following chapters of the book and attempt to put them in perspective in light of extant literature in the area of boundary spanning theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.