63 resultados para Filter cake
Resumo:
The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.
Resumo:
A novel all-fiber bipolar delay line filter is realized in a single-line cascaded high birefringence fiber structure. Optically coherent operation is achieved with suppression of interference noise. Complementary filter outputs give simultaneous lowpass and highpass responses.
Resumo:
We have proposed and demonstrated a multiwavelength fiber laser based on nonlinear polarization rotation (NPR). The mechanism for stable room-temperature multiwavelength operation contributes to the ability of the intensity-dependent loss in NPR to effectively alleviate mode competition. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range of the in-line periodic filter.
Resumo:
The nonlinear operation regimes of quantum-dot semiconductor optical amplifiers (QD-SOAs) are investigated and the ideal filter providing the best all-optical wavelength conversion efficiency is derived theoretically. Results are confirmed by experiments with Q2-factors amounting to 16 dB.
Resumo:
We demonstrate an all-fiber-integrated Er-doped fiber laser operating in the soliton-similariton mode-locking regime. In the similariton part of the cavity, a self-similarly evolving parabolic pulse with highly linear chirp propagates in the presence of normal dispersion. Following an in-line fiber-based birefringent filter, the pulse evolves into a soliton in the part of the cavity with anomalous dispersion. The similariton and the soliton pulses are dechirped to 75.5 and 167.2 fs, respectively, outside of the cavity. Mode-locked operation is very robust, owing to the influence of the two similariton and soliton attractors that predominate each half of the laser cavity. The experimental results are supported with numerical simulations, which provide good agreement.
Resumo:
In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter.
Resumo:
A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems.
Resumo:
We describe how an acousto-optic tunable filter can be used to both demultiplex the signals from multiple fibre Bragg grating sensors and simultaneously provide wide bandwidth signal demodulation in a system using interferometric wavelength shift detection. In an experimental demonstration, the approach provided a noise limited strain resolution of 24.9 nε Hz -1/2 at 15 Hz. © 2007 IOP Publishing Ltd.
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 νm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements. © 2007 IOP Publishing Ltd.
Resumo:
We have proposed and demonstrated a multiwavelength fiber laser based on nonlinear polarization rotation (NPR). The mechanism for stable room-temperature multiwavelength operation contributes to the ability of the intensity-dependent loss in NPR to effectively alleviate mode competition. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range of the in-line periodic filter.
Resumo:
A novel all-fiber bipolar delay line filter is realized in a single-line cascaded high birefringence fiber structure. Optically coherent operation is achieved with suppression of interference noise. Complementary filter outputs give simultaneous lowpass and highpass responses.
Resumo:
We demonstrate experimentally a novel and simple tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a distribution feedback laser diode and high reflection fiber Bragg gratings (FBGs). In this filter, variable time delay is provided by cascaded high reflection fiber Bragg gratings (FBGs), and the tuning of the filter is realized by tuning different FBG to match the fixed carrier wavelength, or adjusting the carrier wavelength to fit different FBG. The incoherent negative tapping is realized by using the carrier depletion effect in a distribution feedback laser diode.
Resumo:
This paper proposes a novel design of optical filters based on a cascade of tailored fiber Bragg gratings (FBGs) operating in the transmission regime. As an example of the application of the proposed general technique, ultranarrow optical vestigial sideband (VSB) filtering based on two FBGs operating in the transmission regime was examined. This design can be easily implemented by writing FBG-based filters for each wavelengthdivision-multiplexing channel before multiplexing. © 2006 IEEE.
Resumo:
This paper examines a method for locating within a scene a distribution of an absorbing gas using a passive imaging technique. An oscillatory modulation of the angle of a narrowband dielectric filter located in front of a camera imaging a scene, gives rise to an intensity modulation that differs in regions occupied by the absorbing gas. A preliminary low cost system has been constructed from readily available components which demonstrates how the location of gas within a scene can be implemented. Modelling of the system has been carried out, especially highlighting the transmission effects of the dielectric filter upon different regions of the image.
Resumo:
We propose a novel approach to ultra-narrow optical filtering based on a specially designed slightly asymmetric filter, which can be fabricated using fibre Bragg gratings. A feasibility of 8×40 Gbit/s DWDM RZ transmission with 0.8 bit/s/Hz spectral efficiency (without polarisation multiplexing) over 1280 km of SMF/DCF link without FEC has been confirmed by numerical modelling. © 2004 Elsevier Inc. All rights reserved.