42 resultados para Field-based model
Resumo:
Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
We have attempted to bring together two areas which are challenging for both IS research and practice: forms of coordination and management of knowledge in the context of global, virtual software development projects. We developed a more comprehensive, knowledge-based model of how coordination can be achieved, and\illustrated the heuristic and explanatory power of the model when applied to global software projects experiencing different degrees of success. We first reviewed the literature on coordination and determined what is known about coordination of knowledge in global software projects. From this we developed a new, distinctive knowledge-based model of coordination, which was then employed to analyze two case studies of global software projects, at SAP and Baan, to illustrate the utility of the model.
Resumo:
Purpose: Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach: The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings: The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications: ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value: The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM. © Emerald Group Publishing Limited.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
Knowledge maintenance is a major challenge for both knowledge management and the Semantic Web. Operating over the Semantic Web, there will be a network of collaborating agents, each with their own ontologies or knowledge bases. Change in the knowledge state of one agent may need to be propagated across a number of agents and their associated ontologies. The challenge is to decide how to propagate a change of knowledge state. The effects of a change in knowledge state cannot be known in advance, and so an agent cannot know who should be informed unless it adopts a simple ‘tell everyone – everything’ strategy. This situation is highly reminiscent of the classic Frame Problem in AI. We argue that for agent-based technologies to succeed, far greater attention must be given to creating an appropriate model for knowledge update. In a closed system, simple strategies are possible (e.g. ‘sleeping dog’ or ‘cheap test’ or even complete checking). However, in an open system where cause and effect are unpredictable, a coherent cost-benefit based model of agent interaction is essential. Otherwise, the effectiveness of every act of knowledge update/maintenance is brought into question.
Resumo:
Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.
Resumo:
This paper contributes to the literature on the intra-firm diffusion of innovations by investigating the factors that affect the firm’s decision to adopt and use sets of complementary innovations. We define complementary innovations those innovations whose joint use generates super additive gains, i.e. the gain from the joint adoption is higher than the sum of the gains derived from the adoption of each innovation in isolation. From a theoretical perspective, we present a simple decision model, whereby the firm decides ‘whether’ and ‘how much’ to invest in each of the innovations under investigation based upon the expected profit gain from each possible combination of adoption and use. The model shows how the extent of complementarity among the innovations can affect the firm’s profit gains and therefore the likelihood that the firm will adopt these innovations jointly, rather than individually. From an empirical perspective, we focus on four sets of management practices, namely operating (OMP), monitoring (MMP), targets (TMP) and incentives (IMP) management practices. We show that these sets of practices, although to a different extent, are complementary to each other. Then, we construct a synthetic indicator of the depth of their use. The resulting intra-firm index is built to reflect not only the number of practices adopted but also the depth of their individual use and the extent of their complementarity. The empirical testing of the decision model is carried out using the evidence from the adoption behaviour of a sample of 1,238 UK establishments present in the 2004 Workplace Employment Relations Survey (WERS). Our empirical results show that the intra-firm profitability based model is a good model in that it can explain more of the variability of joint adoption than models based upon the variability of adoption and use of individual practices. We also investigate whether a number of firm specific and market characteristics by affecting the size of the gains (which the joint adoption of innovations can generate) may drive the intensity of use of the four innovations. We find that establishment size, whether foreign owned, whether exposed to an international market and the degree of homogeneity of the final product are important determinants of the intensity of the joint adoption of the four innovations. Most importantly, our results point out that the factors that the economics of innovation literature has been showing to affect the intensity of use of a technological innovation do also affect the intensity of use of sets of innovative management practices. However, they can explain only a small part of the diversity of their joint adoption use by the firms in the sample.
Resumo:
Data Envelopment Analysis (DEA) is a nonparametric method for measuring the efficiency of a set of decision making units such as firms or public sector agencies, first introduced into the operational research and management science literature by Charnes, Cooper, and Rhodes (CCR) [Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2, 429–444]. The original DEA models were applicable only to technologies characterized by positive inputs/outputs. In subsequent literature there have been various approaches to enable DEA to deal with negative data. In this paper, we propose a semi-oriented radial measure, which permits the presence of variables which can take both negative and positive values. The model is applied to data on a notional effluent processing system to compare the results with those yielded by two alternative methods for dealing with negative data in DEA: The modified slacks-based model suggested by Sharp et al. [Sharp, J.A., Liu, W.B., Meng, W., 2006. A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs. Journal of Operational Research Society 57 (11) 1–6] and the range directional model developed by Portela et al. [Portela, M.C.A.S., Thanassoulis, E., Simpson, G., 2004. A directional distance approach to deal with negative data in DEA: An application to bank branches. Journal of Operational Research Society 55 (10) 1111–1121]. A further example explores the advantages of using the new model.
Resumo:
We develop a multi-agent based model to simulate a population which comprises of two ethnic groups and a peacekeeping force. We investigate the effects of different strategies for civilian movement to the resulting violence in this bi-communal population. Specifically, we compare and contrast random and race-based migration strategies. Race-based migration leads the formation of clusters. Previous work in this area has shown that same-race clustering instigates violent behavior in otherwise passive segments of the population. Our findings confirm this. Furthermore, we show that in settings where only one of the two races adopts race-based migration it is a winning strategy especially in violently predisposed populations. On the other hand, in relatively peaceful settings clustering is a restricting factor which causes the race that adopts it to drift into annihilation. Finally, we show that when race-based migration is adopted as a strategy by both ethnic groups it results in peaceful co-existence even in the most violently predisposed populations.
Resumo:
We investigate the policies of (1) restricting social influence and (2) imposing curfews upon interacting citizens in a community. We compare and contrast their effects on the social order and the emerging levels of civil violence. Influence models have been used in the past in the context of decision making in a variety of application domains. The policy of curfews has been utilised with the aim of curbing social violence but little research has been done on its effectiveness. We develop a multi-agent-based model that is used to simulate a community of citizens and the police force that guards it. We find that restricting social influence does indeed pacify rebellious societies, but has the opposite effect on peaceful ones. On the other hand, our simple model indicates that restricting mobility through curfews has a pacifying effect across all types of society.