33 resultados para Feature selection algorithm
Resumo:
A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.
Resumo:
Aircraft manufacturing industries are looking for solutions in order to increase their productivity. One of the solutions is to apply the metrology systems during the production and assembly processes. Metrology Process Model (MPM) (Maropoulos et al, 2007) has been introduced which emphasises metrology applications with assembly planning, manufacturing processes and product designing. Measurability analysis is part of the MPM and the aim of this analysis is to check the feasibility for measuring the designed large scale components. Measurability Analysis has been integrated in order to provide an efficient matching system. Metrology database is structured by developing the Metrology Classification Model. Furthermore, the feature-based selection model is also explained. By combining two classification models, a novel approach and selection processes for integrated measurability analysis system (MAS) are introduced and such integrated MAS could provide much more meaningful matching results for the operators. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.
Resumo:
A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.
Resumo:
Marr's work offered guidelines on how to investigate vision (the theory - algorithm - implementation distinction), as well as specific proposals on how vision is done. Many of the latter have inevitably been superseded, but the approach was inspirational and remains so. Marr saw the computational study of vision as tightly linked to psychophysics and neurophysiology, but the last twenty years have seen some weakening of that integration. Because feature detection is a key stage in early human vision, we have returned to basic questions about representation of edges at coarse and fine scales. We describe an explicit model in the spirit of the primal sketch, but tightly constrained by psychophysical data. Results from two tasks (location-marking and blur-matching) point strongly to the central role played by second-derivative operators, as proposed by Marr and Hildreth. Edge location and blur are evaluated by finding the location and scale of the Gaussian-derivative `template' that best matches the second-derivative profile (`signature') of the edge. The system is scale-invariant, and accurately predicts blur-matching data for a wide variety of 1-D and 2-D images. By finding the best-fitting scale, it implements a form of local scale selection and circumvents the knotty problem of integrating filter outputs across scales. [Supported by BBSRC and the Wellcome Trust]
Resumo:
A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.
Resumo:
There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.
Resumo:
The literature discusses several methods to control for self-selection effects but provides little guidance on which method to use in a setting with a limited number of variables. The authors theoretically compare and empirically assess the performance of different matching methods and instrumental variable and control function methods in this type of setting by investigating the effect of online banking on product usage. Hybrid matching in combination with the Gaussian kernel algorithm outperforms the other methods with respect to predictive validity. The empirical finding of large self-selection effects indicates the importance of controlling for these effects when assessing the effectiveness of marketing activities.
Resumo:
Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
Link quality-based rate adaptation has been widely used for IEEE 802.11 networks. However, network performance is affected by both link quality and random channel access. Selection of transmit modes for optimal link throughput can cause medium access control (MAC) throughput loss. In this paper, we investigate this issue and propose a generalised cross-layer rate adaptation algorithm. It considers jointly link quality and channel access to optimise network throughput. The objective is to examine the potential benefits by cross-layer design. An efficient analytic model is proposed to evaluate rate adaptation algorithms under dynamic channel and multi-user access environments. The proposed algorithm is compared to link throughput optimisation-based algorithm. It is found rate adaptation by optimising link layer throughput can result in large performance loss, which cannot be compensated by the means of optimising MAC access mechanism alone. Results show cross-layer design can achieve consistent and considerable performance gains of up to 20%. It deserves to be exploited in practical design for IEEE 802.11 networks.
Resumo:
Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.
Resumo:
Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets.
Resumo:
Due to dynamic variability, identifying the specific conditions under which non-functional requirements (NFRs) are satisfied may be only possible at runtime. Therefore, it is necessary to consider the dynamic treatment of relevant information during the requirements specifications. The associated data can be gathered by monitoring the execution of the application and its underlying environment to support reasoning about how the current application configuration is fulfilling the established requirements. This paper presents a dynamic decision-making infrastructure to support both NFRs representation and monitoring, and to reason about the degree of satisfaction of NFRs during runtime. The infrastructure is composed of: (i) an extended feature model aligned with a domain-specific language for representing NFRs to be monitored at runtime; (ii) a monitoring infrastructure to continuously assess NFRs at runtime; and (iii) a exible decision-making process to select the best available configuration based on the satisfaction degree of the NRFs. The evaluation of the approach has shown that it is able to choose application configurations that well fit user NFRs based on runtime information. The evaluation also revealed that the proposed infrastructure provided consistent indicators regarding the best application configurations that fit user NFRs. Finally, a benefit of our approach is that it allows us to quantify the level of satisfaction with respect to NFRs specification.
Resumo:
Value of online Question Answering (QandA) communities is driven by the question-answering behaviour of its members. Finding the questions that members are willing to answer is therefore vital to the effcient operation of such communities. In this paper, we aim to identify the parameters that cor- relate with such behaviours. We train different models and construct effective predictions using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success.