17 resultados para Faculty of Technology
Resumo:
In global policy documents, the language of Technology-Enhanced Learning (TEL) now firmly structures a perception of educational technology which ‘subsumes’ terms like Networked Learning and e-Learning. Embedded in these three words though is a deterministic, economic assumption that technology has now enhanced learning, and will continue to do so. In a market-driven, capitalist society this is a ‘trouble free’, economically focused discourse which suggests there is no need for further debate about what the use of technology achieves in learning. Yet this raises a problem too: if technology achieves goals for human beings, then in education we are now simply counting on ‘use of technology’ to enhance learning. This closes the door on a necessary and ongoing critical pedagogical conversation that reminds us it is people that design learning, not technology. Furthermore, such discourse provides a vehicle for those with either strong hierarchical, or neoliberal agendas to make simplified claims politically, in the name of technology. This chapter is a reflection on our use of language in the educational technology community through a corpus-based Critical Discourse Analysis (CDA). In analytical examples that are ‘loaded’ with economic expectation, we can notice how the policy discourse of TEL narrows conversational space for learning so that people may struggle to recognise their own subjective being in this language. Through the lens of Lieras’s externality, desubjectivisation and closure (Lieras, 1996) we might examine possible effects of this discourse and seek a more emancipatory approach. A return to discussing Networked Learning is suggested, as a first step towards a more multi-directional conversation than TEL, that acknowledges the interrelatedness of technology, language and learning in people’s practice. Secondly, a reconsideration of how we write policy for educational technology is recommended, with a critical focus on how people learn, rather than on what technology is assumed to enhance.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.