24 resultados para Factor 2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both cytokines and tumor factors have been implicated in tissue loss in cancercachexia. Loss of adipose tissue is most likely due to the tumor (and host) factorzinc-α2-glycoprotein because of its direct lipolytic effect, ability to sensitizeadipocytes to lipolytic stimuli and increased expression in cachexia. TNF-α andthe tumor factor proteolysis-inducing factor are the major contenders for skeletalmuscle at rophy; both increase protein degradat ion through theubiquitin-proteasome pathway and depres s protein synthesis throughphosphorylation of eukaryotic initiation factor 2α. However, while most studiesreport proteolysis-inducing factor levels to correlate with the appearance ofcachexia, there is some disagreement regarding a correlation between serumlevels of TNF-α and weight loss. Furthermore, only antagonists to proteolysisinducingfactor prevent muscle loss in cancer patients, suggesting that tumorfactors are the most important. © 2010 Future Medicine Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer’s disease. The transcription factor, Nrf2 (nuclear factor E2-related factor 2) that binds to the antioxidant responsive element (ARE) activates a battery of genes encoding enzymes and factors essential for neuronal survival. We have investigated the hypothesis that a downstream product of cyclooxygenase(COX-2), 15-deoxy-delta (12, 14)-prostagland in J2 (15d-PGJ2) has protective effects by activating the Nrf2 pathway during oxidative stress.Human neuroblastoma cells (SHSY5Y) were differentiated intoneuronal-like cells as described previously (Gimenez-Cassina et al.,2006). SHSY5Y cells were co-treated with 10 mM buthionine sulfoximine (BSO) 7 10 mM 15d-PGJ2. Cell viability was measured by MTT assay and cellular glutathione (GSH) levels were measured after treating cells for0.5-24 hours by GSH recycling assay. Cellular Nrf2 levels were determined by immunoblotting. IL-6 levels were measured by ELISA.15d-PGJ2 alone lowered GSH levels 30min after the treatment(12.870.64 nmol/mg protein) and returned to untreated control levels at 16hours (28.173.6 nmol/mg protein; Po0.01). Compared to intracellular GSH levels in untreated cells (27.871.8 nmol/mg protein) BSO treatment alone significantly decreased GSH (9.672.1 nmol/mg protein;Po0.001) but co-incubation with 15d-PGJ2 for 24 hours prevented the depletion elicited by BSO(21.372.7 nmol/mg protein). Compared to untreated cells BSO treatment decrease dIL-6 secretion (from 0.941.6ng/ml to 0.6971.3ng/ml) and total Nrf2 protein levels (by21%). Co-incubation with15d-PGJ2 for 24 hours with BSO did not change IL-6(0.6771.4ng/ml) or total Nrf2 level at any time point. This study suggests that neuronal toxicity resulting from glutathione depletion canbere stored by the induction of Nrf2-ARE pathway and the role of the Nrf2 signalling merits further investigation in neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8-10. Both dexamethasone and a β 3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

VEGF receptor-2 plays a critical role in endothelial cell proliferation during angiogenesis. However, regulation of receptor activity remains incompletely explained. Here, we demonstrate that VEGF stimulates microvascular endothelial cell proliferation in a dose-dependent manner with VEGF-induced proliferation being greatest at 5 and 100 ng/ml and significantly reduced at intermediate concentrations (>50% at 20 ng/ml). Neutralization studies confirmed that signaling occurs via VEGFR-2. In a similar fashion, ERK/MAPK is strongly activated in response to VEGF stimulation as demonstrated by its phosphorylation, but with a decrease in phosphoryation at 20 ng/ml VEGF. Immunoblotting analysis revealed that VEGF did not cause a dose-dependent change in expression of VEGFR-2 but instead resulted in reduced phosphorylation of VEGFR-2 when cells were exposed to 10 and 20 ng/ml of VEGF. VEGFR-2 dephosphorylation was associated with an increase in the protein tyrosine phosphatase, SH-PTP1, and endothelial nitric oxide synthase (eNOS). Immunoprecipitation and selective immunoblotting confirmed the association between VEGFR-2 dephosphorylation and the upregulation of SH-PTP1 and eNOS. Transfection of endothelial cells with antisense oligonucleotide against VEGFR-2 completely abolished VEGF-induced proliferation, whereas anti SH-PTP1 dramatically increased VEGF-induced proliferation by 1 and 5-fold at 10 and 200 ng/ml VEGF, respectively. Suppression of eNOS expression only abolished endothelial cell proliferation at VEGF concentrations above 20 ng/ml. Taken together, these results indicate that activation of VEGFR-2 by VEGF enhances SH-PTP1 activity and eNOS expression, which in turn lead to two diverse events: one is that SH-PTP1 dephosphorylates VEGFR-2 and ERK/MAPK, which weaken VEGF mitogenic activity, and the other is that eNOS increases nitric oxide production which in turn lowers SH-PTP1 activity via S-nitrosylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.