24 resultados para FE(III) COMPLEX
Resumo:
Harmonically related components are typically heard as a unified entity with a rich timbre and a pitch corresponding to the fundamental frequency. Mistuning a component generally has four consequences: (i) the global pitch of the complex shifts in the same direction as the mistuning; (ii) the component makes a reduced contribution to global pitch; (iii) the component is heard out as a separate sound with a pure timbre; (iv) its pitch differs from that of a pure tone of equal frequency in a small but systematic way. Local interactions between neighbouring components cannot explain these effects; instead they are usually explained in terms of the global operation of a single harmonic-template mechanism. However, several observations indicate that separate mechanisms govern the selection of spectral components for perceptual fusion and for the computation of global pitch. First, an increase in mistuning causes a harmonic to be heard out before it begins to be excluded from the computation of global pitch. Second, a single even harmonic added to an odd-harmonic complex is typically more salient than its odd neighbours. Third, the mistuning of a component in frequency-shifted stimuli, or stimuli with a moderate spectral stretch, results in changes in salience and component pitch like those seen for harmonic stimuli. Fourth, the global pitch of frequency-shifted stimuli is predicted well by the weighted fit of a harmonic template, but, with the exception of the lowest component, the fusion of individual partials for shifted stimuli is best predicted by the common pattern of spectral spacing. Fifth, our sensitivity to spectral pattern is surprisingly resistant to random variations in component spacing induced by applying mistunings to several harmonics at once. These findings are evaluated in the context of an autocorrelogram model of the proposed pitch/grouping dissociation. © S. Hirzel Verlag · EAA.
Resumo:
Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples of bistable RbxMn[Fe(CN)6]y·zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity. Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric forms (0.55 eV), and the conductivity change between the two phases is governed mainly by the variation of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the charge transport mechanism at T < 220 K from an Arrhenius-type to a varying activation energy behavior, conferring an unusual “double-loop” shape to the hysteresis.
Resumo:
The research described within this thesis is concerned with the investigation of transition metal ion complexation within hydrophilic copolymer membranes. The membranes are copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine, the 2-hydroxyethyl ester of 4,4'- dicarboxy-2,2'-bipyridine & bis-(5-vinylsalicylidene)ethylenediamine with 2-hydroxyethyl methacrylate. The effect of the polymer matrix on the formation and properties of transition metal iron complexes has been studied, specifically Cr(III) & Fe(II) salts for the bipyridyl- based copolymer membranes and Co(II), Ni(II) & Cu(II) salts for the salenH2- based copolymer membranes. The concomitant effect of complex formation on the properties of the polymer matrix have also been studied, e.g. on mechanical strength. A detailed body of work into the kinetics and thermodynamics for the formation of Cu(II) complexes in the salenH2- based copolymer membranes has been performed. The rate of complex formation is found to be very slow while the value of K for the equilibrium of complex formation is found to be unexpectedly small and shows a slight anion dependence. These phenomena are explained in terms of the effects of the heterogeneous phase provided by the polymer matrix. The transport of Cr(III) ions across uncomplexed and Cr(III)-pre-complexed bipyridyl-based membranes has been studied. In both cases, no Cr(III) coordination occurs within the time-scale of an experiment. Pre-complexation of the membrane does not lead to a change in the rate of permeation of Cr(III) ions. The transport of Co(II), Ni(II) & Cu(II) ions across salenH2- based membranes shows that there is no detectable lag-time in transport of the ions, despite independent evidence that complex formation within the membranes does occur. Finally, the synthesis of a number of functionalised ligands is described. Although they were found to be non-polymerisable by the methods employed in this research, they remain interesting ligands which provide a startmg pomt for further functionalisation.
Resumo:
This thesis is concerned with Organisational Problem Solving. The work reflects the complexities of organisational problem situations and the eclectic approach that has been necessary to gain an understanding of the processes involved. The thesis is structured into three main parts. Part I describes the author's understanding of problems and suitable approaches. Chapter 2 identifies the Transcendental Realist (TR) view of science (Harre 1970, Bhaskar 1975) as the best general framework for identifying suitable approaches to complex organisational problems. Chapter 3 discusses the relationship between Checkland's methodology (1972) and TR. The need to generate iconic (explanatory) models of the problem situation is identified and the ability of viable system modelling to supplement the modelling stage of the methodology is explored in Chapter 4. Chapter 5 builds further on the methodology to produce an original iconic model of the methodological process. The model characterises the mechanisms of organisational problem situations as well as desirable procedural steps. The Weltanschauungen (W's) or "world views" of key actors is recognised as central to the mechanisms involved. Part II describes the experience which prompted the theoretical investigation. Chapter 6 describes the first year of the project. The success of this stage is attributed to the predominance of a single W. Chapter 7 describes the changes in the organisation which made the remaining phase of the project difficult. These difficulties are attributed to a failure to recognise the importance of differing W's. Part III revisits the theoretical and organisational issues. Chapter 8 identifies a range of techniques embodying W's which are compatible with .the framework of Part I and which might usefully supplement it. Chapter 9 characterises possible W's in the sponsoring organisation. Throughout the work, an attempt 1s made to reflect the process as well as the product of the author's leaving.
Discriminating antigen and non-antigen using proteome dissimilarity III:tumour and parasite antigens
Resumo:
Computational genome analysis enables systematic identification of potential immunogenic proteins within a pathogen. Immunogenicity is a system property that arises through the interaction of host and pathogen as mediated through the medium of a immunogenic protein. The overt dissimilarity of pathogenic proteins when compared to the host proteome is conjectured by some to be the determining principal of immunogenicity. Previously, we explored this idea in the context of Bacterial, Viral, and Fungal antigen. In this paper, we broaden and extend our analysis to include complex antigens of eukaryotic origin, arising from tumours and from parasite pathogens. For both types of antigen, known antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. In contrast to our previous results, both visual inspection and statistical evaluation indicate a much wider range of homologues and a significant level of discrimination; but, as before, we could not determine a viable threshold capable of properly separating non-antigen from antigen. In concert with our previous work, we conclude that global proteome dissimilarity is not a useful metric for immunogenicity for presently available antigens arising from Bacteria, viruses, fungi, parasites, and tumours. While we see some signal for certain antigen types, using dissimilarity is not a useful approach to identifying antigenic molecules within pathogen genomes.
Resumo:
Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.
Resumo:
The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics.
Resumo:
Objective: The aim of this study was to design a novel experimental approach to investigate the morphological characteristics of auditory cortical responses elicited by rapidly changing synthesized speech sounds. Methods: Six sound-evoked magnetoencephalographic (MEG) responses were measured to a synthesized train of speech sounds using the vowels /e/ and /u/ in 17 normal hearing young adults. Responses were measured to: (i) the onset of the speech train, (ii) an F0 increment; (iii) an F0 decrement; (iv) an F2 decrement; (v) an F2 increment; and (vi) the offset of the speech train using short (jittered around 135. ms) and long (1500. ms) stimulus onset asynchronies (SOAs). The least squares (LS) deconvolution technique was used to disentangle the overlapping MEG responses in the short SOA condition only. Results: Comparison between the morphology of the recovered cortical responses in the short and long SOAs conditions showed high similarity, suggesting that the LS deconvolution technique was successful in disentangling the MEG waveforms. Waveform latencies and amplitudes were different for the two SOAs conditions and were influenced by the spectro-temporal properties of the sound sequence. The magnetic acoustic change complex (mACC) for the short SOA condition showed significantly lower amplitudes and shorter latencies compared to the long SOA condition. The F0 transition showed a larger reduction in amplitude from long to short SOA compared to the F2 transition. Lateralization of the cortical responses were observed under some stimulus conditions and appeared to be associated with the spectro-temporal properties of the acoustic stimulus. Conclusions: The LS deconvolution technique provides a new tool to study the properties of the auditory cortical response to rapidly changing sound stimuli. The presence of the cortical auditory evoked responses for rapid transition of synthesized speech stimuli suggests that the temporal code is preserved at the level of the auditory cortex. Further, the reduced amplitudes and shorter latencies might reflect intrinsic properties of the cortical neurons to rapidly presented sounds. Significance: This is the first demonstration of the separation of overlapping cortical responses to rapidly changing speech sounds and offers a potential new biomarker of discrimination of rapid transition of sound.