23 resultados para Eye-movement Desensitization
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations and its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. Most of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as waveform shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions extend the information from typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focuses on detection of CN patients' waveform type and on foveation time measure. Specifically, it proposes a robust method to recognize cycles corresponding to the specific CN waveform in the eye movement pattern and, for those cycles, evaluate the exact signal tracts in which a subject foveates. About 40 eyemovement recordings, either infrared-oculographic or electrooculographic, were acquired from 16 CN subjects. Results suggest that the use of an adaptive threshold applied to the eye velocity signal could improve the estimation of slow phase start point. This can enhance foveation time computing and reduce influence of repositioning saccades and data noise on the waveform type identification.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder that appears at birth or during the first few months of life; it is characterised by involuntary, conjugated, bilateral to and fro ocular oscillations. Pathogenesis of congenital nystagmus is still unknown. Eye movement recording allow to extract and analyse nystagmus main features such as shape, amplitude and frequency; depending on the morphology of the oscillations nystagmus can be classified in different categories (pendular, jerk, horizontal unidirectional, bidirectional). In general, CN patient show a considerable decrease of the visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations; however, image stabilisation is still achieved during the short foveation periods in which eye velocity slows down while the target image is placed onto the fovea. Visual acuity was found to be mainly dependent on foveation periods duration, but cycle-to-cycle foveation repeatability and reduction of retinal image velocities also contribute in increasing visual acuity. This study concentrate on cycle-to-cycle image position variation onto fovea, trying to characterise the sequences of foveation positions. Eye-movement (infrared oculographic or electro oculographic) recordings, relative to different gaze positions and belonging to more than 30 CN patients, were analysed. Preliminary results suggest that sequences of foveations show a cyclic pattern with a dominant frequency (around 0.3 Hz on average) much lower than that of the nystagmus (about 3.3 Hz on average). Sequences of foveations reveals an horizontal ocular swing of more than 2 degree on average, which can explain the low visual acuity of the CN patient. Current CN therapies, pharmacological treatment or surgery of the ocular muscles, mainly aim to increase the patient's visual acuity. Hence, it is fundamental to have an objective parameter (expected visual acuity) for therapy planning. The information about sequences of foveations can improve estimation of patient visual acuity. © 2008 Springer-Verlag.
Resumo:
Purpose: Dementia is associated with various alterations of the eye and visual function. Over 60% of cases are attributable to Alzheimer's disease, a significant proportion of the remainder to vascular dementia or dementia with Lewy bodies, while frontotemporal dementia, and Parkinson's disease dementia are less common. This review describes the oculo-visual problems of these five dementias and the pathological changes which may explain these symptoms. It further discusses clinical considerations to help the clinician care for older patients affected by dementia. Recent findings: Visual problems in dementia include loss of visual acuity, defects in colour vision and visual masking tests, changes in pupillary response to mydriatics, defects in fixation and smooth and saccadic eye movements, changes in contrast sensitivity function and visual evoked potentials, and disturbance of complex visual functions such as in reading ability, visuospatial function, and the naming and identification of objects. Pathological changes have also been reported affecting the crystalline lens, retina, optic nerve, and visual cortex. Clinically, issues such as cataract surgery, correcting the refractive error, quality of life, falls, visual impairment and eye care for dementia have been addressed. Summary: Many visual changes occur across dementias, are controversial, often based on limited patient numbers, and no single feature can be regarded as diagnostic of any specific dementia. Nevertheless, visual hallucinations may be more characteristic of dementia with Lewy bodies and Parkinson's disease dementia than Alzheimer's disease or frontotemporal dementia. Differences in saccadic eye movement dysfunction may also help to distinguish Alzheimer's disease from frontotemporal dementia and Parkinson's disease dementia from dementia with Lewy bodies. Eye care professionals need to keep informed of the growing literature in vision/dementia, be attentive to signs and symptoms suggestive of cognitive impairment, and be able to adapt their practice and clinical interventions to best serve patients with dementia.
Resumo:
Infantile Nystagmus Syndrome, or Congenital Nystagmus, is an ocular-motor disorder characterized by involuntary, conjugated and bilateral to and fro ocular oscillations. Good visual acuity in congenital nystagmus can be achieved during the foveation periods in which eye velocity slows down while the target image crosses the fovea. Visual acuity was found to be mainly dependent on the duration of the foveation periods. In this work a new approach is proposed for estimation of foveation parameters: a cubic spline interpolation of the nystagmus recording before localizing the start point of foveation window and to estimate its duration. The performances of the proposed algorithm were assessed in comparison with a previously developed algorithm, used here as gold standard. The obtained results suggest that the spline interpolation could be a useful tool to filter the eye movement recordings before applying an algorithm to estimate the foveation window parameters. © 2013 IEEE.
Foveation time measure in Congenital Nystagmus through second order approximation of the slow phases
Resumo:
Congenital Nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations, and its pathogenesis is still unknown. The pathology is de fined as "congenital" from the onset time of its arise which could be at birth or in the first months of life. Visual acuity in CN subjects is often diminished due to nystagmus continuous oscillations, mainly on the horizontal plane, which disturb image fixation on the retina. However, during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals) the image of a given target can still be stable, allowing a subject to reach a higher visual acuity. In CN subjects, visual acuity is usually assessed both using typical measurement techniques (e.g. Landolt C test) and with eye movement recording in different gaze positions. The offline study of eye movement recordings allows physicians to analyse nystagmus main features such as waveform shape, amplitude and frequency and to compute estimated visual acuity predictors. This analytical functions estimates the best corrected visual acuity using foveation time and foveation position variability, hence a reliable estimation of this two parameters is a fundamental factor in assessing visual acuity. This work aims to enhance the foveation time estimation in CN eye movement recording, computing a second order approximation of the slow phase components of nystag-mus oscillations. About 19 infraredoculographic eye-movement recordings from 10 CN subjects were acquired and the visual acuity assessed with an acuity predictor was compared to the one measured in primary position. Results suggest that visual acuity measurements based on foveation time estimation obtained from interpolated data are closer to value obtained during Landolt C tests. © 2010 IEEE.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations, that can arise since the first months of life. Pathogenesis of congenital nystagmus is still under investigation. In general, CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, image stabilisation is still achieved during the short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions add information to typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focus on robust detection of CN patients' foveations. Specifically, it proposes a method to recognize the exact signal tracts in which a subject foveates, This paper also analyses foveation sequences. About 50 eyemovement recordings, either infrared-oculographic or electrooculographic, from different CN subjects were acquired. Results suggest that an exponential interpolation for the slow phases of nystagmus could improve foveation time computing and reduce influence of breaking saccades and data noise. Moreover a concise description of foveation sequence variability can be achieved using non-fitting splines. © 2009 Springer Berlin Heidelberg.
Resumo:
Purpose: Technological devices such as smartphones and tablets are widely available and increasingly used as visual aids. This study evaluated the use of a novel app for tablets (MD_evReader) developed as a reading aid for individuals with a central field loss resulting from macular degeneration. The MD_evReader app scrolls text as single lines (similar to a news ticker) and is intended to enhance reading performance using the eccentric viewing technique by both reducing the demands on the eye movement system and minimising the deleterious effects of perceptual crowding. Reading performance with scrolling text was compared with reading static sentences, also presented on a tablet computer. Methods: Twenty-six people with low vision (diagnosis of macular degeneration) read static or dynamic text (scrolled from right to left), presented as a single line at high contrast on a tablet device. Reading error rates and comprehension were recorded for both text formats, and the participant’s subjective experience of reading with the app was assessed using a simple questionnaire. Results: The average reading speed for static and dynamic text was not significantly different and equal to or greater than 85 words per minute. The comprehension scores for both text formats were also similar, equal to approximately 95% correct. However, reading error rates were significantly (p=0.02) less for dynamic text than for static text. The participants’ questionnaire ratings of their reading experience with the MD_evReader were highly positive and indicated a preference for reading with this app compared with their usual method. Conclusions: Our data show that reading performance with scrolling text is at least equal to that achieved with static text and in some respects (reading error rate) is better than static text. Bespoke apps informed by an understanding of the underlying sensorimotor processes involved in a cognitive task such as reading have excellent potential as aids for people with visual impairments.
Resumo:
This thesis describes the design and development of an eye alignment/tracking system which allows self alignment of the eye’s optical axis with a measurement axis. Eye alignment is an area of research largely over-looked, yet it is a fundamental requirement in the acquisition of clinical data from the eye. New trends in the ophthalmic market, desiring portable hand-held apparatus, and the application of ophthalmic measurements in areas other than vision care have brought eye alignment under new scrutiny. Ophthalmic measurements taken in hand-held devices with out an clinician present requires alignment in an entirely new set of circumstances, requiring a novel solution. In order to solve this problem, the research has drawn upon eye tracking technology to monitor the eye, and a principle of self alignment to perform alignment correction. A handheld device naturally lends itself to the patient performing alignment, thus a technique has been designed to communicate raw eye tracking data to the user in a manner which allows the user to make the necessary corrections. The proposed technique is a novel methodology in which misalignment to the eye’s optical axis can be quantified, corrected and evaluated. The technique uses Purkinje Image tracking to monitor the eye’s movement as well as the orientation of the optical axis. The use of two sets of Purkinje Images allows quantification of the eye’s physical parameters needed for accurate Purkinje Image tracking, negating the need for prior anatomical data. An instrument employing the methodology was subsequently prototyped and validated, allowing a sample group to achieve self alignment of their optical axis with an imaging axis within 16.5-40.8 s, and with a rotational precision of 0.03-0.043°(95% confidence intervals). By encompassing all these factors the technique facilitates self alignment from an unaligned position on the visual axis to an aligned position on the optical axis. The consequence of this is that ophthalmic measurements, specifically pachymetric measurements, can be made in the absence of an optician, allowing the use of ophthalmic instrumentation and measurements in health professions other than vision care.