18 resultados para Export by harvest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lutein and zeaxanthin are carotenoids that are selectively taken up into the macula of the eye, where they are thought to protect against the development of age-related macular degeneration. They are obtained from dietary sources, with the highest concentrations found in dark green leafy vegetables, such as kale and spinach. In this Review, compositional variations due to variety/cultivar, stage of maturity, climate or season, farming practice, storage, and processing effects are highlighted. Only data from studies which report on lutein and zeaxanthin content in foods are reported. The main focus is kale; however, other predominantly xanthophyll containing vegetables such as spinach and broccoli are included. A small amount of data about exotic fruits is also referenced for comparison. The qualitative and quantitative composition of carotenoids in fruits and vegetables is known to vary with multiple factors. In kale, lutein and zeaxanthin levels are affected by pre-harvest effects such as maturity, climate, and farming practice. Further research is needed to determine the post-harvest processing and storage effects of lutein and zeaxanthin in kale; this will enable precise suggestions for increasing retinal levels of these nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 μm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, εT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high εT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L.