21 resultados para Experimental Analysis
Resumo:
A new surface analysis technique has been developed which has a number of benefits compared to conventional Low Energy Ion Scattering Spectrometry (LEISS). A major potential advantage arising from the absence of charge exchange complications is the possibility of quantification. The instrumentation that has been developed also offers the possibility of unique studies concerning the interaction between low energy ions and atoms and solid surfaces. From these studies it may also be possible, in principle, to generate sensitivity factors to quantify LEISS data. The instrumentation, which is referred to as a Time-of-Flight Fast Atom Scattering Spectrometer has been developed to investigate these conjecture in practice. The development, involved a number of modifications to an existing instrument, and allowed samples to be bombarded with a monoenergetic pulsed beam of either atoms or ions, and provided the capability to analyse the spectra of scattered atoms and ions separately. Further to this a system was designed and constructed to allow incident, exit and azimuthal angles of the particle beam to be varied independently. The key development was that of a pulsed, and mass filtered atom source; which was developed by a cyclic process of design, modelling and experimentation. Although it was possible to demonstrate the unique capabilities of the instrument, problems relating to surface contamination prevented the measurement of the neutralisation probabilities. However, these problems appear to be technical rather than scientific in nature, and could be readily resolved given the appropriate resources. Experimental spectra obtained from a number of samples demonstrate some fundamental differences between the scattered ion and neutral spectra. For practical non-ordered surfaces the ToF spectra are more complex than their LEISS counterparts. This is particularly true for helium scattering where it appears, in the absence of detailed computer simulation, that quantitative analysis is limited to ordered surfaces. Despite this limitation the ToFFASS instrument opens the way for quantitative analysis of the 'true' surface region to a wider range of surface materials.
Resumo:
The key to the correct application of ANOVA is careful experimental design and matching the correct analysis to that design. The following points should therefore, be considered before designing any experiment: 1. In a single factor design, ensure that the factor is identified as a 'fixed' or 'random effect' factor. 2. In more complex designs, with more than one factor, there may be a mixture of fixed and random effect factors present, so ensure that each factor is clearly identified. 3. Where replicates can be grouped or blocked, the advantages of a randomised blocks design should be considered. There should be evidence, however, that blocking can sufficiently reduce the error variation to counter the loss of DF compared with a randomised design. 4. Where different treatments are applied sequentially to a patient, the advantages of a three-way design in which the different orders of the treatments are included as an 'effect' should be considered. 5. Combining different factors to make a more efficient experiment and to measure possible factor interactions should always be considered. 6. The effect of 'internal replication' should be taken into account in a factorial design in deciding the number of replications to be used. Where possible, each error term of the ANOVA should have at least 15 DF. 7. Consider carefully whether a particular factorial design can be considered to be a split-plot or a repeated measures design. If such a design is appropriate, consider how to continue the analysis bearing in mind the problem of using post hoc tests in this situation.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The effect of friction and interparticle cohesion forces on the gas-solid flow hydrodynamics was discussed. A proposed interparticle cohesion and frictional force terms have been tested in a continuum fully developed flow model to investigate their effect on the general hydrodynamic features of vertical duct flow. It was observed that both terms have direct effect on lowering the material carryover, which implies a reduced bed expansion in freely bubbling column. The parametric analysis shows that cohesion and frictional forces are high when compared to kinetic stress and hence it can play a major role in describing the hydrodynamics features of the flow.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.
Resumo:
Communication through relay channels in wireless sensor networks can create diversity and consequently improve the robustness of data transmission for ubiquitous computing and networking applications. In this paper, we investigate the performances of relay channels in terms of diversity gain and throughput via both experimental research and theoretical analysis. Two relaying algorithms, dynamic relaying and fixed relaying, are utilised and tested to find out what the relay channels can contribute to system performances. The tests are based on a wireless relay sensor network comprising a source node, a destination node and a couple of relay nodes, and carried out in an indoor environment with rare movement of objects nearby. The tests confirm, in line with the analytical results, that more relay nodes lead to higher diversity gain in the network. The test results also show that the data throughput between the source node and the destination node is enhanced by the presence of the relay nodes. Energy consumption in association with the relaying strategy is also analysed. Copyright © 2009 John Wiley & Sons, Ltd.