80 resultados para Evoked potentials - Visual
Resumo:
Distortion or deprivation of vision during an early `critical' period of visual development can result in permanent visual impairment which indicates the need to identify and treat visually at-risk individuals early. A significant difficulty in this respect is that conventional, subjective methods of visual acuity determination are ineffective before approximately three years of age. In laboratory studies, infant visual function has been quantified precisely, using objective methods based on visual evoked potentials (VEP), preferential looking (PL) and optokinetic nystagmus (OKN) but clinical assessment of infant vision has presented a particular difficulty. An initial aim of this study was to evaluate the relative clinical merits of the three techniques. Clinical derivatives were devised, the OKN method proved unsuitable but the PL and VEP methods were evaluated in a pilot study. Most infants participating in the study had known ocular and/or neurological abnormalities but a few normals were included for comparison. The study suggested that the PL method was more clinically appropriate for the objective assessment of infant acuity. A study of normal visual development from birth to one year was subsequently conducted. Observations included cycloplegic refraction, ophthalmoscopy and preferential looking visual acuity assessment using horizontally and vertically oriented square wave gratings. The aims of the work were to investigate the efficiency and sensitivity of the technique and to study possible correlates of visual development. The success rate of the PL method varied with age; 87% of newborns and 98% of infants attending follow-up successfully completed at least one acuity test. Below two months monocular acuities were difficult to secure; infants were most testable around six months. The results produced were similar to published data using the acuity card procedure and slightly lower than, but comparable with acuity data derived using extended PL methods. Acuity development was not impaired in infants found to have retinal haemorrhages as newborns. A significant relationship was found between newborn binocular acuity and anisometropia but not with other refractive findings. No strong or consistent correlations between grating acuity and refraction were found for three, six or twelve months olds. Improvements in acuity and decreases in levels of hyperopia over the first week of life were suggestive of recovery from minor birth trauma. The refractive data was analysed separately to investigate the natural history of refraction in normal infants. Most newborns (80%) were hyperopic, significant astigmatism was found in 86% and significant anisometropia in 22%. No significant alteration in spherical equivalent refraction was noted between birth and three months, a significant reduction in hyperopia was evident by six months and this trend continued until one year. Observations on the astigmatic component of the refractive error revealed a rather erratic series of changes which would be worthy of further investigation since a repeat refraction study suggested difficulties in obtaining stable measurements in newborns. Astigmatism tended to decrease between birth and three months, increased significantly from three to six months and decreased significantly from six to twelve months. A constant decrease in the degree of anisometropia was evident throughout the first year. These findings have implications for the correction of infantile refractive error.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.
Resumo:
Purpose: Dementia is associated with various alterations of the eye and visual function. Over 60% of cases are attributable to Alzheimer's disease, a significant proportion of the remainder to vascular dementia or dementia with Lewy bodies, while frontotemporal dementia, and Parkinson's disease dementia are less common. This review describes the oculo-visual problems of these five dementias and the pathological changes which may explain these symptoms. It further discusses clinical considerations to help the clinician care for older patients affected by dementia. Recent findings: Visual problems in dementia include loss of visual acuity, defects in colour vision and visual masking tests, changes in pupillary response to mydriatics, defects in fixation and smooth and saccadic eye movements, changes in contrast sensitivity function and visual evoked potentials, and disturbance of complex visual functions such as in reading ability, visuospatial function, and the naming and identification of objects. Pathological changes have also been reported affecting the crystalline lens, retina, optic nerve, and visual cortex. Clinically, issues such as cataract surgery, correcting the refractive error, quality of life, falls, visual impairment and eye care for dementia have been addressed. Summary: Many visual changes occur across dementias, are controversial, often based on limited patient numbers, and no single feature can be regarded as diagnostic of any specific dementia. Nevertheless, visual hallucinations may be more characteristic of dementia with Lewy bodies and Parkinson's disease dementia than Alzheimer's disease or frontotemporal dementia. Differences in saccadic eye movement dysfunction may also help to distinguish Alzheimer's disease from frontotemporal dementia and Parkinson's disease dementia from dementia with Lewy bodies. Eye care professionals need to keep informed of the growing literature in vision/dementia, be attentive to signs and symptoms suggestive of cognitive impairment, and be able to adapt their practice and clinical interventions to best serve patients with dementia.
Resumo:
We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished significantly better between real simultaneity (0 ms delay between two stimuli) and apparent simultaneity (17 ms delay between two stimuli) than controls. In line with the increased sensitivity, event-related MEG activity showed increased differential responses for simultaneity versus apparent simultaneity. The strongest evoked potentials, observed over occipital cortices at about 130 ms, were correlated with performance differences in the ASD group only. Superior access to early visual brain processes in ASD might underlie increased resolution of visual events in perception. © 2012 Springer Science+Business Media New York.
Resumo:
Alzheimer's disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of β-amyloid (Aβ) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections. © 2012 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Visual evoked magnetic responses were recorded to full-field and left and right half-field stimulation with three check sizes (70′, 34′ and 22′) in five normal subjects. Recordings were made sequentially on a 20-position grid (4 × 5) based on the inion, by means of a single-channel direct current-Superconducting Quantum Interference Device second-order gradiometer. The topographic maps were consistent on the same subjects recorded 2 months apart. The half-field responses produced the strongest signals in the contralateral hemisphere and were consistent with the cruciform model of the calcarine fissure. Right half fields produced upper-left-quadrant outgoing fields and lower-left-quadrant ingoing fields, while the left half field produced the opposite response. The topographic maps also varied with check size, with the larger checks producing positive or negative maximum position more anteriorly than small checks. In addition, with large checks the full-field responses could be explained as the summation of the two half fields, whereas full-field responses to smaller checks were more unpredictable and may be due to sources located at the occipital pole or lateral surface. In addition, dipole sources were located as appropriate with the use of inverse problem solutions. Topographic data will be vital to the clinical use of the visual evoked field but, in addition, provides complementary information to visual evoked potentials, allowing detailed studies of the visual cortex. © 1992 Kluwer Academic Publishers.
Resumo:
Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.
Resumo:
The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.
Resumo:
A variety of visual symptoms have been associated with Alzheimer's disease (AD). These include delays in flash visual evoked potentials which indicate a disruption of the integrity of the visual pathway. Examination of the visual cortex has revealed the presence of both senile plaques and neurofibrillary tangles. The purpose of this study was to determine whether there were differences in the number and/or size of optic nerve axons between AD patients and non-demented age-matched controls. Five optic nerves from AD patients and five from age-matched controls were embedded in epon resin and 1 micron sections prepared on a Reichert ultramicrotome. The sections were then stained in toluidine blue and examined at x400 magnification. The numbers of axons were counted in photographs of three fields taken at random from each section. To evaluate the axon diameters, 70 axons were chosen at random from each patient and measured using a calibrated eyepiece graticule. The total axon counts revealed no significant differences between the AD optic nerves and the age-matched controls. However, the frequency distribution of axon diameters was significantly different in the two groups. In particular, there were fewer larger diameter axons in patients with AD as previously reported. Degeneration of the large diameter axons suggests involvement of the magnocellular as opposed to the parvocellular pathways. Hence, there could be differences in visual performance of AD patients compared with normals which could be important in clinical diagnosis.
Resumo:
Dementia, including Alzheimer’s disease (AD), is a major disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ß-amyloid (Aß) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary response to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances of complex visual functions such as reading, visuospatial function, and in the naming and identification of objects. Many of these changes are controversial with conflicting data in the literature and no ocular or visual feature can be regarded as particularly diagnostic of AD. In addition, some pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. The optometrist has a role in helping a patient with AD, if it is believed that signs and symptoms of the disease are present, so as to optimize visual function and improve the quality of life. (J Optom 2009;2:103-111 ©2009 Spanish Council of Optometry)
Resumo:
A study was carried out of 45 migrainous patients with visually induced migraine (VIM), and 25 migrainous students, each having an age and sex matched control. The study utilised questionnaires, interviews, electroencephalography (EEG) and visual evoked potentials (VEP). The experimental work and analysis was carried out in the Neuropsychology Unit in collaboration with the Birmingham Migraine Clinic, over a period of five years. The study suggests: 1. The literature on a possible relationship between migraine and epilepsy hitherto published is unreliable (supporting evidence is given). 2. That a much greater precision is needed in defining migraine for research purposes. 3. A revised methodology for the selection of controls is needed and this is proposed. 4. That despite what are now seen to be superficial similarities, there are clear distinctions of a fundamental nature between photo-sensitive epilepsy (PSE) and VIM. 5. Caution be used when taking headache as a symptom, since many of the precipitants of migrainous headache can also precipitate non-migrainous headache (NMH). 6. The list of visual precipitants of migraine is expanded (particularly flicker and pattern). 7. That colour (principally red) is a previously unreported precipitant of migraine. 8. The extended range of responses to flicker (the 'H' response) has no significant difference in its frequency of occurrence in patients and normal controls, which contradicts previous literature. 9. The mechanisms thought to underlie migraine serve to explain previously unexplained EEG findings. 10. Further research is needed and proposed.
Resumo:
Patients with non-erosive reflux disease (NERD) report symptoms which commonly fail to improve on conventional antireflux therapies. Oesophageal visceral hyperalgaesia may contribute to symptom generation in NERD and we explore this hypothesis using oesophageal evoked potentials. Fifteen endoscopically confirmed NERD patients (four female, 29–56 years) plus 15 matched healthy volunteers (four female, 23–56 years) were studied. All patients had oesophageal manometry/24-h pH monitoring and all subjects underwent evoked potential and sensory testing, using electrical stimulation of the distal oesophagus. Cumulatively, NERD patients had higher sensory thresholds and increased evoked potential latencies when compared to controls (P = 0.01). In NERD patients, there was a correlation between pain threshold and acid exposure as determined by DeMeester score (r = 0.63, P = 0.02), with increased oesophageal sensitivity being associated with lower DeMeester score. Reflux negative patients had lower pain thresholds when compared to both reflux positive patients and controls. Evoked potentials were normal in reflux negative patients but significantly delayed in the reflux positive group (P = 0.01). We demonstrate that NERD patients form a continuum of oesophageal afferent sensitivity with a correlation between the degree of acid exposure and oesophageal pain thresholds. We provide objective evidence that increased oesophageal pain sensitivity in reflux negative NERD is associated with heightened afferent sensitivity as normal latency evoked potential responses could be elicited with reduced afferent input. Increased oesophageal afferent pain sensitivity may play an important role in a subset of NERD and could offer an alternate therapeutic target.
Resumo:
Background & Aims: Esophageal hypersensitivity is thought to be important in the generation and maintenance of symptoms in noncardiac chest pain (NCCP). In this study, we explored the neurophysiologic basis of esophageal hypersensitivity in a cohort of NCCP patients. Methods: We studied 12 healthy controls (9 women; mean age, 37.1 ± 8.7 y) and 32 NCCP patients (23 women; mean age, 47.2 ± 10 y). All had esophageal manometry, esophageal evoked potentials to electrical stimulation, and NCCP patients had 24-hour ambulatory pH testing. Results: The NCCP patients had reduced pain thresholds (PT) (72.1 ± 19.4 vs 54.2 ± 23.6, P = .02) and increased P1 latencies (P1 = 105.5 ± 11.1 vs 118.1 ± 23.4, P = .02). Subanalysis showed that the NCCP group could be divided into 3 distinct phenotypic classifications. Group 1 had reduced pain thresholds in conjunction with normal/reduced latency P1 latencies (n = 9). Group 2 had reduced pain thresholds in conjunction with increased (>2.5 SD) P1 latencies (n = 7), and group 3 had normal pain thresholds in conjunction with either normal (n = 10) or increased (>2.5 SD, n = 3) P1 latencies. Conclusions: Normal esophageal evoked potential latencies with reduced PT, as seen in group 1 patients, is indicative of enhanced afferent transmission and therefore increased esophageal afferent pathway sensitivity. Increased esophageal evoked potential latencies with reduced PT in group 2 patients implies normal afferent transmission to the cortex but heightened secondary cortical processing of this information, most likely owing to psychologic factors such as hypervigilance. This study shows that NCCP patients with esophageal hypersensitivity may be subclassified into distinct phenotypic subclasses based on sensory responsiveness and objective neurophysiologic profiles. © 2006 by the American Gastroenterological Association.
Resumo:
Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.