28 resultados para Errors in variables models
Resumo:
Methods: It has been estimated that medication error harms 1-2% of patients admitted to general hospitals. There has been no previous systematic review of the incidence, cause or type of medication error in mental healthcare services. Methods: A systematic literature search for studies that examined the incidence or cause of medication error in one or more stage(s) of the medication-management process in the setting of a community or hospital-based mental healthcare service was undertaken. The results in the context of the design of the study and the denominator used were examined. Results: All studies examined medication management processes, as opposed to outcomes. The reported rate of error was highest in studies that retrospectively examined drug charts, intermediate in those that relied on reporting by pharmacists to identify error and lowest in those that relied on organisational incident reporting systems. Only a few of the errors identified by the studies caused actual harm, mostly because they were detected and remedial action was taken before the patient received the drug. The focus of the research was on inpatients and prescriptions dispensed by mental health pharmacists. Conclusion: Research about medication error in mental healthcare is limited. In particular, very little is known about the incidence of error in non-hospital settings or about the harm caused by it. Evidence is available from other sources that a substantial number of adverse drug events are caused by psychotropic drugs. Some of these are preventable and might probably, therefore, be due to medication error. On the basis of this and features of the organisation of mental healthcare that might predispose to medication error, priorities for future research are suggested.
Resumo:
OpenMI is a widely used standard allowing exchange of data between integrated models, which has mostly been applied to dynamic, deterministic models. Within the FP7 UncertWeb project we are developing mechanisms and tools to support the management of uncertainty in environmental models. In this paper we explore the integration of the UncertWeb framework with OpenMI, to assess the issues that arise when propagating uncertainty in OpenMI model compositions, and the degree of integration possible with UncertWeb tools. In particular we develop an uncertainty-enabled model for a simple Lotka-Volterra system with an interface conforming to the OpenMI standard, exploring uncertainty in the initial predator and prey levels, and the parameters of the model equations. We use the Elicitator tool developed within UncertWeb to identify the initial condition uncertainties, and show how these can be integrated, using UncertML, with simple Monte Carlo propagation mechanisms. The mediators we develop for OpenMI models are generic and produce standard Web services that expose the OpenMI models to a Web based framework. We discuss what further work is needed to allow a more complete system to be developed and show how this might be used practically.
Resumo:
Objective: Loss of skeletal muscle is the most debilitating feature of cancer cachexia, and there are few treatments available. The aim of this study was to compare the anticatabolic efficacy of L-leucine and the leucine metabolite β-hydroxy-β-methylbutyrate (Ca-HMB) on muscle protein metabolism, both invitro and invivo. Methods: Studies were conducted in mice bearing the cachexia-inducing murine adenocarcinoma 16 tumor, and in murine C2 C12 myotubes exposed to proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. Results: Both leucine and HMB were found to attenuate the increase in protein degradation and the decrease in protein synthesis in murine myotubes induced by proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. However, HMB was more potent than leucine, because HMB at 50 μM produced essentially the same effect as leucine at 1 mM. Both leucine and HMB reduced the activity of the ubiquitin-proteasome pathway as measured by the functional (chymotrypsin-like) enzyme activity of the proteasome in muscle lysates, as well as Western blot quantitation of protein levels of the structural/enzymatic proteasome subunits (20 S and 19 S) and the ubiquitin ligases (MuRF1 and MAFbx). Invivo studies in mice bearing the murine adenocarcinoma 16 tumor showed a low dose of Ca-HMB (0.25 g/kg) tobe 60% more effective than leucine (1 g/kg) in attenuating loss of body weight over a 4-d period. Conclusion: These results favor the clinical feasibility of using Ca-HMB over high doses of leucine for the treatment of cancer cachexia. © 2014 Elsevier Inc.
Resumo:
As more of the economy moves from traditional manufacturing to the service sector, the nature of work is becoming less tangible and thus, the representation of human behaviour in models is becoming more important. Representing human behaviour and decision making in models is challenging, both in terms of capturing the essence of the processes, and also the way that those behaviours and decisions are or can be represented in the models themselves. In order to advance understanding in this area, a useful first step is to evaluate and start to classify the various types of behaviour and decision making that are required to be modelled. This talk will attempt to set out and provide an initial classification of the different types of behaviour and decision making that a modeller might want to represent in a model. Then, it will be useful to start to assess the main methods of simulation in terms of their capability in representing these various aspects. The three main simulation methods, System Dynamics, Agent Based Modelling and Discrete Event Simulation all achieve this to varying degrees. There is some evidence that all three methods can, within limits, represent the key aspects of the system being modelled. The three simulation approaches are then assessed for their suitability in modelling these various aspects. Illustration of behavioural modelling will be provided from cases in supply chain management, evacuation modelling and rail disruption.
Resumo:
Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.
Resumo:
Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genomewide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.
Resumo:
The purpose of this study is to develop econometric models to better understand the economic factors affecting inbound tourist flows from each of six origin countries that contribute to Hong Kong’s international tourism demand. To this end, we test alternative cointegration and error correction approaches to examine the economic determinants of tourist flows to Hong Kong, and to produce accurate econometric forecasts of inbound tourism demand. Our empirical findings show that permanent income is the most significant determinant of tourism demand in all models. The variables of own price, weighted substitute prices, trade volume, the share price index (as an indicator of changes in wealth in origin countries), and a dummy variable representing the Beijing incident (1989) are also found to be important determinants for some origin countries. The average long-run income and own price elasticity was measured at 2.66 and – 1.02, respectively. It was hypothesised that permanent income is a better explanatory variable of long-haul tourism demand than current income. A novel approach (grid search process) has been used to empirically derive the weights to be attached to the lagged income variable for estimating permanent income. The results indicate that permanent income, estimated with empirically determined relatively small weighting factors, was capable of producing better results than the current income variable in explaining long-haul tourism demand. This finding suggests that the use of current income in previous empirical tourism demand studies may have produced inaccurate results. The share price index, as a measure of wealth, was also found to be significant in two models. Studies of tourism demand rarely include wealth as an explanatory forecasting long-haul tourism demand. However, finding a satisfactory proxy for wealth common to different countries is problematic. This study indicates with the ECM (Error Correction Models) based on the Engle-Granger (1987) approach produce more accurate forecasts than ECM based on Pesaran and Shin (1998) and Johansen (1988, 1991, 1995) approaches for all of the long-haul markets and Japan. Overall, ECM produce better forecasts than the OLS, ARIMA and NAÏVE models, indicating the superiority of the application of a cointegration approach for tourism demand forecasting. The results show that permanent income is the most important explanatory variable for tourism demand from all countries but there are substantial variations between countries with the long-run elasticity ranging between 1.1 for the U.S. and 5.3 for U.K. Price is the next most important variable with the long-run elasticities ranging between -0.8 for Japan and -1.3 for Germany and short-run elasticities ranging between – 0.14 for Germany and -0.7 for Taiwan. The fastest growing market is Mainland China. The findings have implications for policies and strategies on investment, marketing promotion and pricing.
Resumo:
This investigation aimed to pinpoint the elements of motor timing control that are responsible for the increased variability commonly found in children with developmental dyslexia on paced or unpaced motor timing tasks (Chapter 3). Such temporal processing abilities are thought to be important for developing the appropriate phonological representations required for the development of literacy skills. Similar temporal processing difficulties arise in other developmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD). Motor timing behaviour in developmental populations was examined in the context of models of typical human timing behaviour, in particular the Wing-Kristofferson model, allowing estimation of the contribution of different timing control systems, namely timekeeper and implementation systems (Chapter 2 and Methods Chapters 4 and 5). Research examining timing in populations with dyslexia and ADHD has been inconsistent in the application of stimulus parameters and so the first investigation compared motor timing behaviour across different stimulus conditions (Chapter 6). The results question the suitability of visual timing tasks which produced greater performance variability than auditory or bimodal tasks. Following an examination of the validity of the Wing-Kristofferson model (Chapter 7) the model was applied to time series data from an auditory timing task completed by children with reading difficulties and matched control groups (Chapter 8). Expected group differences in timing performance were not found, however, associations between performance and measures of literacy and attention were present. Results also indicated that measures of attention and literacy dissociated in their relationships with components of timing, with literacy ability being correlated with timekeeper variance and attentional control with implementation variance. It is proposed that these timing deficits associated with reading difficulties are attributable to central timekeeping processes and so the contribution of error correction to timing performance was also investigated (Chapter 9). Children with lower scores on measures of literacy and attention were found to have a slower or failed correction response to phase errors in timing behaviour. Results from the series of studies suggest that the motor timing difficulty in poor reading children may stem from failures in the judgement of synchrony due to greater tolerance of uncertainty in the temporal processing system.
Resumo:
PURPOSE: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset, using a large, international database. METHODS: The database includes 4037 patients with a diagnosis of bipolar I disorder, previously collected at 36 collection sites in 23 countries. Generalized estimating equations (GEE) were used to adjust the data for country median age, and in some models, birth cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. RESULTS: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After adjusting for the birth cohort or when considering only those born after 1959, two subgroups were found. With results of either two or three subgroups, the youngest subgroup was more likely to have a family history of mood disorders and a first episode with depressed polarity. However, without adjusting for birth cohort (three subgroups), family history and polarity of the first episode could not be distinguished between the middle and oldest subgroups. CONCLUSION: These results using international data confirm prior findings using single country data, that there are subgroups of bipolar I disorder based on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more useful for research.
Resumo:
Phosphorylation processes are common post-transductional mechanisms, by which it is possible to modulate a number of metabolic pathways. Proteins are highly sensitive to phosphorylation, which governs many protein-protein interactions. The enzymatic activity of some protein tyrosine-kinases is under tyrosine-phosphorylation control, as well as several transmembrane anion-fluxes and cation exchanges. In addition, phosphorylation reactions are involved in intra and extra-cellular 'cross-talk' processes. Early studies adopted laboratory animals to study these little known phosphorylation processes. The main difficulty encountered with these animal techniques was obtaining sufficient kinase or phosphatase activity suitable for studying the enzymatic process. Large amounts of biological material from organs, such as the liver and spleen were necessary to conduct such work with protein kinases. Subsequent studies revealed the ubiquity and complexity of phosphorylation processes and techniques evolved from early rat studies to the adaptation of more rewarding in vitro models. These involved human erythrocytes, which are a convenient source both for the enzymes, we investigated and for their substrates. This preliminary work facilitated the development of more advanced phosphorylative models that are based on cell lines. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We present three jargonaphasic patients who made phonological errors in naming, repetition and reading. We analyse target/response overlap using statistical models to answer three questions: 1) Is there a single phonological source for errors or two sources, one for target-related errors and a separate source for abstruse errors? 2) Can correct responses be predicted by the same distribution used to predict errors or do they show a completion boost (CB)? 3) Is non-lexical and lexical information summed during reading and repetition? The answers were clear. 1) Abstruse errors did not require a separate distribution created by failure to access word forms. Abstruse and target-related errors were the endpoints of a single overlap distribution. 2) Correct responses required a special factor, e.g., a CB or lexical/phonological feedback, to preserve their integrity. 3) Reading and repetition required separate lexical and non-lexical contributions that were combined at output.
Resumo:
The use of the multiple indicators, multiple causes model to operationalize formative variables (the formative MIMIC model) is advocated in the methodological literature. Yet, contrary to popular belief, the formative MIMIC model does not provide a valid method of integrating formative variables into empirical studies and we recommend discarding it from formative models. Our arguments rest on the following observations. First, much formative variable literature appears to conceptualize a causal structure between the formative variable and its indicators which can be tested or estimated. We demonstrate that this assumption is illogical, that a formative variable is simply a researcher-defined composite of sub-dimensions, and that such tests and estimates are unnecessary. Second, despite this, researchers often use the formative MIMIC model as a means to include formative variables in their models and to estimate the magnitude of linkages between formative variables and their indicators. However, the formative MIMIC model cannot provide this information since it is simply a model in which a common factor is predicted by some exogenous variables—the model does not integrate within it a formative variable. Empirical results from such studies need reassessing, since their interpretation may lead to inaccurate theoretical insights and the development of untested recommendations to managers. Finally, the use of the formative MIMIC model can foster fuzzy conceptualizations of variables, particularly since it can erroneously encourage the view that a single focal variable is measured with formative and reflective indicators. We explain these interlinked arguments in more detail and provide a set of recommendations for researchers to consider when dealing with formative variables.