24 resultados para Equip industrial -- Control
Resumo:
This thesis is based upon a case study of the introduction of automated production technologies at the Longbridge plant of British Leyland in the period 1978 to 1980.The investment in automation was part of an overall programme of modernization to manufacture the new 'Mini Metro' model. In the first Section of the thesis, the different theoretical perspectives on technological change are discussed. Particular emphasis is placed upon the social role of management as the primary controllers of technological change. Their actions are seen to be oriented towards the overall strategy of the firm, integrating the firm's competitive strategy with production methods and techniques.This analysis is grounded in an examination of British Leyland's strategies during the 1970s.. The greater part of the thesis deals with the efforts made by management to secure their strategic objectives in the process of technological change against the conflicting claims of their work-force. Examination of these efforts is linked to the development of industrial relations conflict at Longbridge and in British Leyland as a whole.Emphasis is placed upon the struggle between management in pursuit of their version of efficiency and the trade unions in defence of job controls and demarcations. The thesis concludes that the process of technological change in the motor industry is controlled by social forces,with the introduction of new technologies being closely intertwined with management!s political relations with the trade unions.
Resumo:
The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.
Resumo:
This report examines the results of a pilot study, which used a method of evaluation called randomised control trials (RCTs) to see if a popular business support scheme called Creative Credits worked effectively. The pilot study, which began in Manchester in 2009, was structured so that vouchers, or 'Creative Credits', would be randomly allocated to small and medium-sized businesses applying to invest in creative projects such as developing websites, video production and creative marketing campaigns, to see if they had a real effect on innovation. The research found that the firms who were awarded Creative Credits enjoyed a short-term boost in their innovation and sales growth in the six months following completion of their creative projects. However, the positive effects were not sustained, and after 12 months there was no longer a statistically significant difference between the groups that received the credits and those that didn’t. The report argues that these results would have remained hidden using the normal evaluation methods used by government, and calls for RCTs to be used more widely when evaluating policies to support business growth.
Resumo:
To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.
Resumo:
Experimental methods of policy evaluation are well-established in social policy and development eco-nomics but are rare in industrial and innovation policy. In this paper, we consider the arguments forapplying experimental methods to industrial policy measures, and propose an experimental policy eval-uation approach (which we call RCT+). This approach combines the randomised assignment of firmsto treatment and control groups with a longitudinal data collection strategy incorporating quantitativeand qualitative data (so-called mixed methods). The RCT+ approach is designed to provide a causativerather than purely summative evaluation, i.e. to assess both ‘whether’ and ‘how’ programme outcomesare achieved. In this paper, we assess the RCT+ approach through an evaluation of Creative Credits – aUK business-to-business innovation voucher initiative intended to promote new innovation partnershipsbetween SMEs and creative service providers. The results suggest the potential value of the RCT+ approachto industrial policy evaluation, and the benefits of mixed methods and longitudinal data collection.
Resumo:
As the largest source of dimensional measurement uncertainty, addressing the challenges of thermal variation is vital to ensure product and equipment integrity in the factories of the future. While it is possible to closely control room temperature, this is often not practical or economical to realise in all cases where inspection is required. This article reviews recent progress and trends in seven key commercially available industrial temperature measurement sensor technologies primarily in the range of 0 °C–50 °C for invasive, semi-invasive and non-invasive measurement. These sensors will ultimately be used to measure and model thermal variation in the assembly, test and integration environment. The intended applications for these technologies are presented alongside some consideration of measurement uncertainty requirements with regard to the thermal expansion of common materials. Research priorities are identified and discussed for each of the technologies as well as temperature measurement at large. Future developments are briefly discussed to provide some insight into which direction the development and application of temperature measurement technologies are likely to head.
Resumo:
Although maximum power point tracking (MPPT) is crucial in the design of a wind power generation system, the necessary control strategies should also be considered for conditions that require a power reduction, called de-loading in this paper. A coordinated control scheme for a proposed current source converter (CSC) based DC wind energy conversion system is presented in this paper. This scheme combines coordinated control of the pitch angle, a DC load dumping chopper and the DC/DC converter, to quickly achieve wind farm de-loading. MATLAB/Simulink simulations and experiments are used to validate the purpose and effectiveness of the control scheme, both at the same power level. © 2013 IEEE.
Resumo:
A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.
Resumo:
There is an emerging application which uses a mixture of batteries within an energy storage system. These hybrid battery solutions may contain different battery types. A DC-side cascaded boost converters along with a module based distributed power sharing strategy has been proposed to cope with variations in battery parameters such as, state-of-charge and/or capacity. This power sharing strategy distributes the total power among the different battery modules according to these battery parameters. Each module controller consists of an outer voltage loop with an inner current loop where the desired control reference for each control loop needs to be dynamically varied according to battery parameters to undertake this sharing. As a result, the designed control bandwidth or stability margin of each module control loop may vary in a wide range which can cause a stability problem within the cascaded converter. This paper reports such a unique issue and thoroughly investigates the stability of the modular converter under the distributed sharing scheme. The paper shows that a cascaded PI control loop approach cannot guarantee the system stability throughout the operating conditions. A detailed analysis of the stability issue and the limitations of the conventional approach are highlighted. Finally in-depth experimental results are presented to prove the stability issue using a modular hybrid battery energy storage system prototype under various operating conditions.