28 resultados para Elastomer Blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low-density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X-ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co-continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co-continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions. © 2013 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant number of poly a-ester homologues of poly(L-lactide) (PLLA) have been synthesized and used in miscibility studies together with conventional isomeric diacid-diol polyester variants, poly ß-esters (based on ß-hydroxybutyrate (HB) and ß-hydroxyvalerate (HV)), poly e-caprolactone (PCL), poly e-caprolactone copolymers (e.g. poly(L-lactide-co-caprolactone), and a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP)). A combinatorial approach to rapid miscibility screening using 96-well plates and a uv-visible multi-wavelength plate reader has been developed enabling the clarity of PLLA-based multi-component blend films to be observed. Using these techniques and materials, the ternary phase compatibility diagrams of a range of three-component blend films was prepared, illustrating ranges of behavior varying from miscible blends giving rise to clear films to immiscible blends which are opaque. In this way, novel three-component blends of PLLA/CAB/PCL were developed which are miscible when the CAB content is more than 30%, PLLA less than 80% and PCL less than 60%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the characteristics of blends of biodiesel and a new type of SSPO (sewage sludge derived intermediate pyrolysis oil) in various ratios, and evaluates the application of such blends in an unmodified Lister diesel engine. The engine performance and exhaust emissions were investigated and compared to those of diesel and biodiesel. The engine injectors were inspected and tested after the experiment. The SSPO-biodiesel blends were found to have comparable heating values to biodiesel, but relatively high acidity and carbon residue. The diesel engine has operated with a 30/70 SSPO-biodiesel blend and a 50/50 blend for up to 10h and there was no apparent deterioration in operation observed. It is concluded that with 30% SSPO, the engine gives better overall performance and fuel consumption than with 50% SSPO. The exhaust temperatures of 30% SSPO and 50% SSPO are similar, but 30% SSPO gives relatively lower NO emission than 50% SSPO. The CO and smoke emissions are lower with 50% SSPO than with 30% SSPO. The injectors of the engine operated with SSPO blends were found to have heavy carbon deposition and noticeably reduced opening pressure, which may lead to deteriorated engine performance and exhaust emissions in extended operation. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine.Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of the direct observation, in real-space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho-xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o-xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin-coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length-scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length-scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform thin-films of polymer blends can be produced through spin-coating, which is used on an industrial scale for the production of light emitting diodes, and more recently organic photovoltaic devices. Here, we present the results of the direct observation, and control, over the phase separation of polystyrene and poly(9,9′-dioctylfluorene) during spin-coating using high speed stroboscopic fluorescence microscopy. This new approach, imaging the fluorescence, from a blend of fluorescent + non-fluorescent polymers allows for intensity to be directly mapped to composition, providing a direct determination of composition fluctuations during the spin-coating process. We have studied the compositional development and corresponding structural development for a range of compositions, which produce a range of different phase separated morphologies. We initially observe domains formed by spinodal decomposition, coarsening via Ostwald Ripening until an interfacial instability causes break-up of the bicontinuous morphology. Ostwald ripening continues, and depending upon composition a bicontinuous morphology is re-established. By observing compositional and morphological development in real-time, we are able to direct and control morphological structure development through control of the spin coating parameters via in situ feedback. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper reports on the production of a biocompatible and biodegradable material to be used in a polymer stent used for counteracting the occurrence of anastomotic leakage following gastrointestinal surgery. Chitosan was blended with polycaprolactone in a solvent mixture of acetic acid and water. Membranes were formed with a range of 50/50%, 60/40%, 65/35%, 70/30% and 80/20% polycaprolactone/chitosan. The tensile properties of the blends were examined over a time period to access material degradation. In addition the biocompatibilities of the polycaprolactone/chitosan blends were tested for cytotoxic effect using primary tendon fibroblastic cells. This research concluded that the polycaprolactone/chitosan was non-toxic to the fibroblasts cells in-vitro. Analysis of the mechanical properties of the blends showed a range of mechanical strengths and polymer life spans. Overall, blends of 65/35%, 70/30% and 80/20% polycaprolactone/chitosan emerged as possible candidates for the production of a gastrointestinal stent. © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of PET with the different commercial co(ter)polymer compatibilisers were prepared and the effect of their glycidyl methacrylate (GMA) content and viscosity on the blend properties was determined. The efficiency of compatibilisation of the commercial co(ter)polymer in the ternary blends was examined and compared. For all the ternary blends (PET/EPR/co(ter)polymer, the PET content was fixed at 70 wt% of the total weight of the blends. Higher compatibilisation effect was found in PET/EPR blends compatibilised with the commercial copolymer ethylene glycidyl methacrylate (E-GMA8(5)) containing 8% GMA and MFI = 5 (g/10min) was achieved as reflected in the observed higher elongation at break when compared to corresponding blends compatibilised with the methyl acrylate containing terpolymer ethylene methyl acrylate glycidyl methacrylate EM-GMA8(6) containing 8% GMA and MFI = 6 (g/10min). The presence of methyl acrylate ester groups in the commercial terpolymer EM-GMA (containing similar amount of GMA and same MFI) resulted in low level of compatibilisation due to the possibility of a higher extent of branching and crosslinking resulting from the presence of the ester groups and this would be responsible for the observed lower elongation, and the less favourable morphology observed. Further, the more bulky structure of the terpolymer compared to the copolymer would give rise to a more difficult migration to the interface, thus lowering the efficiency of compatibilisation. However, the morphology of both blends compatibilised with either the terpolymer or the copolymer were not significantly different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.