25 resultados para ELECTROACTIVE SOLUTES
Resumo:
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Resumo:
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co-solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548-4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over whichmatrix-assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool formixture analysis. © 2010 John Wiley & Sons, Ltd.
Resumo:
Diffusion-ordered NMR spectroscopy ("DOSY") is a useful tool for the identification of mixture components. In its basic form it relies on simple differences in hydrodynamic radius to distinguish between different species. This can be very effective where species have significantly different molecular sizes, but generally fails for isomeric species. The use of surfactant co-solutes can allow isomeric species to be distinguished by virtue of their different degrees of interaction with micelles or reversed micelles. The use of micelle-assisted DOSY to resolve the NMR spectra of isomers is illustrated for the case of the three dihydroxybenzenes (catechol, resorcinol, and hydroquinone) in aqueous solution containing sodium dodecyl sulfate micelles, and in chloroform solution containing AOT reversed micelles. © 2009 American Chemical Society.
Resumo:
The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Δ gpd2Δ mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Δ gpd2Δ mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-AΔ of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Δ1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Δ1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Δ gpd2Δ mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Δ gpd2Δ mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.
Resumo:
The controlled export of solutes is crucial for cellular adaptation to hypotonic conditions. In the yeast Saccharomyces cerevisiae glycerol export is mediated by Fpslp, a member of the major intrinsic protein (MIP) family ]of channel proteins. Here we describe a short regulatory domain that restricts glycerol transport through Fpslp. This domain is required for retention of cellular glycerol under hypertonic stress and hence acquisition of osmotolerance. It is located in the N-terminal cytoplasmic extension close to the first transmembrane domain. Several residues within that domain and its precise position are critical for channel control while the proximal residues 13-215 of the N-terminal extension are not required. The sequence of the regulatory domain and its position are perfectly conserved in orthologs from other yeast species. The regulatory domain has an amphiphilic character, and structural predictions indicate that it could fold back into the membrane bilayer. Remarkably, this domain has structural similarity to the channel forming loops B and E of Fpslp and other glycerol facilitators. Intragenic second-site suppressor mutations of the sensitivity to high osmolarity conferred by truncation of the regulatory domain caused diminished glycerol transport, confirming that elevated channel activity is the cause of the osmosensitive phenotype.
Resumo:
Poly(Nε-trifluoroacetyl-l-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanol/acetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of ∼50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
Background - Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review - AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. Major conclusions - As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. General significance - Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Resumo:
A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.