29 resultados para Dwellings -- Insulation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentation of the progress made in modelling fibre agglomerate transport in the racetrack channel. Fibre agglomerates can be generated through the disruption of insulation materials during LOCA in NPPs. The fibres can make their way to the containment sump strainers and lead to their blockage. This blockage can lead to an increase in the pressure drop acting across the strainers, which can lead to cavitation behind the strainer and in the recirculation pumps. This will lead to a loss of ECC water reaching the reactor. A small proportion of the fibres may also reach the reactor vessel. Therefore reliable numerical models of the three-dimensional flow behaviour of the fibres must be developed. The racetrack channel offers the chance to validate such models. The presentation describes the techniques involved and the results obtained from transient simulations of the whole channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current presentation the basic concepts for CFD modelling are described and feasibility studies are presented. On the example of a complex flow situation at plunging jet conditions the model capabilities are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris transport, sedimentation, penetration into the reactor core and head loss build up becomes important to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during loss of coolant accidents. Research projects are being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Helmholtz-Zentrum Dresden-Rossendorf. The projects include experimental investigations of different processes and phenomena of insulation debris in coolant flow and the development of CFD models. Generic complex experiments serve for building up a data base for the validation of models for single effects and their coupling in CFD codes. This paper includes the description of the experimental facility for complex generic experiments (ZSW), an overview about experimental boundary conditions and results for upstream and down-stream phenomena as well as for the long-time behaviour due to corrosive processes. © Carl Hanser Verlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Gorlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Gorlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented. Copyright © 2008 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with an open-core gasifier, a novel open-topped throated gasifier was designed and used. A sampling system was designed and installed to determine the water, tar and particular content of the raw product gas. This permitted evaluation of the effects of process parameters and reactor design on tar and particular production, although a large variation was found for the particulate measurements due to the capture of large particles. For both gasifiers, the gasification process was studied in order to identify and compare the mechanisms controlling the position and shape of the reaction zones. The stability of the reaction zone was found to be governed by the superficial gas velocity within the reactor. A superficial gas velocity below 0.2 Nms-1 resulted in a rising reaction zone in both gasifiers. Turndown is achieved when the rate of char production by flaming pyrolysis equals the rate of char gasification over a range of throughputs. A turndown ratio of 2:1 was achieved for the hybrid-throated gasifier, compared to 1.3:1 for the open-core. It is hypothesized that pyrolysis is a surface area phenomenon, and that in the hybrid gasifier the pyrolysis front can expand to form a dome-shape. The rate of char gasification is believed to increase as the depth of the gasification zone increases. Vibration of the open-core reactor bed decreased the bed pressure drop, reduced the voidage, aided solids flow and gave a minor improvement in the product gas energy content. Insulation improved the performance of both reactors by reducing heat losses resulting in a reduced air to feed ratio requirement. The hybrid gasifier gave a higher energy conversion efficiency, a higher product gas heating value, and a lower tar content than the open-core gasifier due to efficient gas mixing in a high temperature tar cracking region below the throat and reduced heat losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work was to examlne the various stages of the production of industrial laminates based on phenol-formaldehyde resins, with a view of suggesting ways of improving the process economics and/or the physical properties of the final product. Aspects of impregnation, drying, and lamination were investigated. The resins used in all experiments were ammonia-catalysed. Work was concentrated on the lamination stage since this is a labour intensive activity. Paper-phenolic lay-ups were characterised in terms of the temperatures experienced during cure, and a shorter cure-cycle is proposed, utilising the exothermic heat produced during pressing of 25.5 mm thick lay-ups. Significant savings in production costs and improvements in some of the physical properties have been achieved. In particular, water absorption has been reduced by 43-61%. Work on the drying stage has shown that rapid heating of the wet impregnated substrate results in resin solids losses. Drying at lower temperatures by reducing the driving force leads to more resin (up to 6.5%) being retained by the prepregs and therefore more effective use of an expensive raw material. The impregnation work has indicated that residence times above 6 seconds in the varnish bath enhance the insulation resistance of the final product, possibly due to improved resin distribution and reduction in water absorption. In addition, a novel process which involves production of laminates by in situ polymerisation of the phenolic resin on the substrate has been examined. Such a process would eliminate the solvent recovery plant - a necessary stage in current industrial processes. In situ polymerisation has been shown to be chemically feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A need was indicated for the identification of a possible new solar energy product to improve the sales potential of a metal film with a selective surface, manufactured by the industriaI sponsor of this project (INCO). A possible way of overcoming the disadvantageous economics of solar energy collection was identified. This utilised the collection of solar energy by the walls of buildings constructed in such a manner as to allow the transfer of energy into the building, whilst providing adequate thermal insulation in the absence of sunlight. The actual collection element of the wall, being metallic, is also capable of performing the function of a low temperature heating .system in the absence of sunlight. As a result of this, the proposed system, by displacing both the wall and centraI heating system which would otherwise be necessary, demonstrates economic benefits over systems which are constructed solely for the purpose of collecting solar energy. The necessary thermodynamic and meteorological. characteristics and data: are established, and applied to a typical urban site in the North of England, for a typical average year, with and without a shading device incorporated into the construction. It is concluded that the proposed system may offer considerable benefit in reducing the effective heating season in all orientations of wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of an advanced outdoor valve requires coordinated research in the areas of light-triggered self-protecting thyristors, light triggering systems, insulation, cooling and mechanical design aspects. This thesis addresses the first two areas primarily, with a conceptual discussion of the remainder. Using the experience gained from evaluation of a prototype thyristor and computer IKdelling of turn-on behaviour, a light-triggered thyristor with immunity to damage from weak optical triggering and dv/dt triggering was designed, manufactured and evaluated. The optical turn-on process was investigated by measuring currents and voltages in the gate structure during turn-on, and this yielded insights not obtained through conventional measurement techniques. The mechanism by which the thyristor was immune to weak triggering damage is explained, and techniques for optimising the design of the gate structure are proposed. The most significant achievement, however, was the first demonstration of the feasibility of self-protection against forward recovery failure onditions. Furthermore, this was achieved without the need for complex structures or high levels of irradiation. The perfomance of the devices was limited by the inrush capability of the Zones, but it is believed that this can be improved by conventional means. A light triggering system was developed using sem~conductor lasers, and this incorporated several improvements over prior art In terms of optical performance and flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Around 80% of the 63 million people in the UK live in urban areas where demand for affordable housing is highest. Supply of new dwellings is a long way short of demand and with an average annual replacement rate of 0.5% more than 80% of the existing residential housing stock will still be in use by 2050. A high proportion of owner-occupiers, a weak private rental sector and lack of sustainable financing models render England’s housing market one of the least responsive in the developed world. As an exploratory research the purpose of this paper is to examine the provision of social housing in the United Kingdom with a particular focus on England, and to set out implications for housing associations delivering sustainable community development. The paper is based on an analysis of historical data series (Census data), current macro-economic data and population projections to 2033. The paper identifies a chronic undersupply of affordable housing in England which is likely to be exacerbated by demographic development, changes in household composition and reduced availability of finance to develop new homes. Based on the housing market trends analysed in this paper opportunities are identified for policy makers to remove barriers to the delivery of new affordable homes and for social housing providers to evolve their business models by taking a wider role in sustainable community development.