19 resultados para Doppler frequency shift
Resumo:
This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier.
Resumo:
We report for the first time the experimental demonstration of doubly differential quadrature phase shift keying (DDQPSK) using optical coherent detection. This method is more robust against high frequency offsets (FO) than conventional single differential quadrature phase shift keying (SDQPSK) with offset compensation. DDQPSK is shown to be able to compensate large FOs (up to the baud rate) and has lower computational requirements than other FO compensation methods. DDQPSK is a simple algorithm to implement in a real-time decoder for optical burst switched network scenarios. Simulation results are also provided, which show good agreement with the experimental results for both SDQPSK and DDQPSK transmissions. © 1989-2012 IEEE.
Resumo:
In this paper we will demonstrate the improved BER performance of doubly differential phase shift keying in a coherent optical packet switching scenario while still retaining the benefits of high frequency offset tolerance. © OSA 2014.
Resumo:
The authors present the impact of asymmetric filtering of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 67% (carrier suppressed return to zero)-differential phase shift keying systems. The performance is examined (in an amplified spontaneous emission (ASE) noise-limited regime and in the presence of chromatic dispersion) when offsetting the filter at the receiver by substantial amounts via balanced, constructive and destructive single-ended detections. It is found that with a slight offset (vestigial side band) or an offset of almost half of the modulation frequency (single-side band), there is a significant improvement in the calculated 'Q'. © The Institution of Engineering and Technology 2013.