24 resultados para Distributed Social Networks


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we explore the idea of social role theory (SRT) and propose a novel regularized topic model which incorporates SRT into the generative process of social media content. We assume that a user can play multiple social roles, and each social role serves to fulfil different duties and is associated with a role-driven distribution over latent topics. In particular, we focus on social roles corresponding to the most common social activities on social networks. Our model is instantiated on microblogs, i.e., Twitter and community question-answering (cQA), i.e., Yahoo! Answers, where social roles on Twitter include "originators" and "propagators", and roles on cQA are "askers" and "answerers". Both explicit and implicit interactions between users are taken into account and modeled as regularization factors. To evaluate the performance of our proposed method, we have conducted extensive experiments on two Twitter datasets and two cQA datasets. Furthermore, we also consider multi-role modeling for scientific papers where an author's research expertise area is considered as a social role. A novel application of detecting users' research interests through topical keyword labeling based on the results of our multi-role model has been presented. The evaluation results have shown the feasibility and effectiveness of our model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autism is a developmental disorder that is currently defined in terms of a triad of impairments in social interaction, communication, and behavioural flexibility. Psychological models have focussed on deficits in high level social and cognitive processes, such as ‘weak central coherence’ and deficits in ‘theory of mind’. Converging evidence from different fields of neuroscience research indicates that the underlying neural dysfunction is associated with atypical patterns of cortical connectivity (Rippon et al., 2007). This arises very early in development and results in sensory, perceptual and cognitive deficits at a much earlier and more fundamental level than previously suggested, but with cascading effects on higher level psychological and social processes. Earlier research in this sphere has focussed mainly on patterns of underconnectivity in distributed cortical networks underpinning process such as language and executive function. (Just et al., 2007). Such research mainly utilises imaging techniques with high spatial resolution. This paper focuses on evidence associated with local over-connectivity, evident in more low level and transitory processes and hence more easily measurable with techniques with high temporal resolution, such as MEG and EEG. Results are described which provide evidence of such local over-connectivity, characterised by atypical results in the gamma frequency range (Brown et al., 2005) together with discussions about the future directions of such research and its implications for remediation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Editorial

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.