29 resultados para Discrete-time sliding mode control
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.
Resumo:
A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The algorithm resembles back-propagation in that an error function is minimized using a gradient-based method, but the optimization is carried out in the hidden part of state space either instead of, or in addition to weight space. Computational results are presented for some simple dynamical training problems, one of which requires response to a signal 100 time steps in the past.
Resumo:
A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The method resembles back-propagation in that it is a least-squares, gradient-based optimization method, but the optimization is carried out in the hidden part of state space instead of weight space. A straightforward adaptation of this method to feedforward networks offers an alternative to training by conventional back-propagation. Computational results are presented for simple dynamical training problems, with varied success. The failures appear to arise when the method converges to a chaotic attractor. A patch-up for this problem is proposed. The patch-up involves a technique for implementing inequality constraints which may be of interest in its own right.
Resumo:
This paper introduces responsive systems: systems that are real-time, event-based, or time-dependent. There are a number of trends that are accelerating the adoption of responsive systems: timeliness requirements for business information systems are becoming more prevalent, embedded systems are increasingly integrated into soft real-time command-and-control systems, improved message-oriented middleware is facilitating growth in event-processing applications, and advances in service-oriented and component-based techniques are lowering the costs of developing and deploying responsive applications. The use of responsive systems is illustrated here in two application areas: the defense industry and online gaming. The papers in this special issue of the IBM Systems Journal are then introduced. The paper concludes with a discussion of the key remaining challenges in this area and ideas for further work.
Resumo:
A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.
Resumo:
Many planning and control tools, especially network analysis, have been developed in the last four decades. The majority of them were created in military organization to solve the problem of planning and controlling research and development projects. The original version of the network model (i.e. C.P.M/PERT) was transplanted to the construction industry without the consideration of the special nature and environment of construction projects. It suited the purpose of setting up targets and defining objectives, but it failed in satisfying the requirement of detailed planning and control at the site level. Several analytical and heuristic rules based methods were designed and combined with the structure of C.P.M. to eliminate its deficiencies. None of them provides a complete solution to the problem of resource, time and cost control. VERT was designed to deal with new ventures. It is suitable for project evaluation at the development stage. CYCLONE, on the other hand, is concerned with the design and micro-analysis of the production process. This work introduces an extensive critical review of the available planning techniques and addresses the problem of planning for site operation and control. Based on the outline of the nature of site control, this research developed a simulation based network model which combines part of the logics of both VERT and CYCLONE. Several new nodes were designed to model the availability and flow of resources, the overhead and operating cost and special nodes for evaluating time and cost. A large software package is written to handle the input, the simulation process and the output of the model. This package is designed to be used on any microcomputer using MS-DOS operating system. Data from real life projects were used to demonstrate the capability of the technique. Finally, a set of conclusions are drawn regarding the features and limitations of the proposed model, and recommendations for future work are outlined at the end of this thesis.
Resumo:
The research developed in this thesis explores the sensing and inference of human movement in a dynamic way, as opposed to conventional measurement systems, that are only concerned with discrete evaluations of stimuli in sequential time. Typically, conventional approaches are used to infer the dynamic movement of the body; such as vision and motion tracking devices, with either a human diagnosis or complex image processing algorithm to classify the movement. This research is therefore the first of its kind to attempt and provide a movement classifying algorithm through the use of minimal sensing points, with the application for this novel system, to classify human movement during a golf swing. There are two main categories of force sensing. Firstly, array-type systems consisting of many sensing elements, and are the most commonly researched and commercially available. Secondly, reduced force sensing element systems (RFSES) also known as distributive systems have only been recently exploited in the academic world. The fundamental difference between these systems is that array systems handle the data captured from each sensor as unique outputs and suffer the effects of resolution. The effect of resolution, is the error in the load position measurement between sensing elements, as the output is quantized in terms of position. This can be compared to a reduced sensor element system that maximises that data received through the coupling of data from a distribution of sensing points to describe the output in discrete time. Also this can be extended to a coupling of transients in the time domain to describe an activity or dynamic movement. It is the RFSES that is to be examined and exploited in the commercial sector due to its advantages over array-based approaches such as reduced design, computational complexity and cost.
Resumo:
Link adaptation is a critical component of IEEE 802.11 systems, which adapts transmission rates to dynamic wireless channel conditions. In this paper we investigate a general cross-layer link adaptation algorithm which jointly considers the physical layer link quality and random channel access at the MAC layer. An analytic model is proposed for the link adaptation algorithm. The underlying wireless channel is modeled with a multiple state discrete time Markov chain. Compared with the pure link quality based link adaptation algorithm, the proposed cross-layer algorithm can achieve considerable performance gains of up to 20%.
Resumo:
Objective: To independently evaluate the impact of the second phase of the Health Foundation's Safer Patients Initiative (SPI2) on a range of patient safety measures. Design: A controlled before and after design. Five substudies: survey of staff attitudes; review of case notes from high risk (respiratory) patients in medical wards; review of case notes from surgical patients; indirect evaluation of hand hygiene by measuring hospital use of handwashing materials; measurement of outcomes (adverse events, mortality among high risk patients admitted to medical wards, patients' satisfaction, mortality in intensive care, rates of hospital acquired infection). Setting: NHS hospitals in England. Participants: Nine hospitals participating in SPI2 and nine matched control hospitals. Intervention The SPI2 intervention was similar to the SPI1, with somewhat modified goals, a slightly longer intervention period, and a smaller budget per hospital. Results: One of the scores (organisational climate) showed a significant (P=0.009) difference in rate of change over time, which favoured the control hospitals, though the difference was only 0.07 points on a five point scale. Results of the explicit case note reviews of high risk medical patients showed that certain practices improved over time in both control and SPI2 hospitals (and none deteriorated), but there were no significant differences between control and SPI2 hospitals. Monitoring of vital signs improved across control and SPI2 sites. This temporal effect was significant for monitoring the respiratory rate at both the six hour (adjusted odds ratio 2.1, 99% confidence interval 1.0 to 4.3; P=0.010) and 12 hour (2.4, 1.1 to 5.0; P=0.002) periods after admission. There was no significant effect of SPI for any of the measures of vital signs. Use of a recommended system for scoring the severity of pneumonia improved from 1.9% (1/52) to 21.4% (12/56) of control and from 2.0% (1/50) to 41.7% (25/60) of SPI2 patients. This temporal change was significant (7.3, 1.4 to 37.7; P=0.002), but the difference in difference was not significant (2.1, 0.4 to 11.1; P=0.236). There were no notable or significant changes in the pattern of prescribing errors, either over time or between control and SPI2 hospitals. Two items of medical history taking (exercise tolerance and occupation) showed significant improvement over time, across both control and SPI2 hospitals, but no additional SPI2 effect. The holistic review showed no significant changes in error rates either over time or between control and SPI2 hospitals. The explicit case note review of perioperative care showed that adherence rates for two of the four perioperative standards targeted by SPI2 were already good at baseline, exceeding 94% for antibiotic prophylaxis and 98% for deep vein thrombosis prophylaxis. Intraoperative monitoring of temperature improved over time in both groups, but this was not significant (1.8, 0.4 to 7.6; P=0.279), and there were no additional effects of SPI2. A dramatic rise in consumption of soap and alcohol hand rub was similar in control and SPI2 hospitals (P=0.760 and P=0.889, respectively), as was the corresponding decrease in rates of Clostridium difficile and meticillin resistant Staphylococcus aureus infection (P=0.652 and P=0.693, respectively). Mortality rates of medical patients included in the case note reviews in control hospitals increased from 17.3% (42/243) to 21.4% (24/112), while in SPI2 hospitals they fell from 10.3% (24/233) to 6.1% (7/114) (P=0.043). Fewer than 8% of deaths were classed as avoidable; changes in proportions could not explain the divergence of overall death rates between control and SPI2 hospitals. There was no significant difference in the rate of change in mortality in intensive care. Patients' satisfaction improved in both control and SPI2 hospitals on all dimensions, but again there were no significant changes between the two groups of hospitals. Conclusions: Many aspects of care are already good or improving across the NHS in England, suggesting considerable improvements in quality across the board. These improvements are probably due to contemporaneous policy activities relating to patient safety, including those with features similar to the SPI, and the emergence of professional consensus on some clinical processes. This phenomenon might have attenuated the incremental effect of the SPI, making it difficult to detect. Alternatively, the full impact of the SPI might be observable only in the longer term. The conclusion of this study could have been different if concurrent controls had not been used.
Resumo:
Objectives: To conduct an independent evaluation of the first phase of the Health Foundation's Safer Patients Initiative (SPI), and to identify the net additional effect of SPI and any differences in changes in participating and non-participating NHS hospitals. Design: Mixed method evaluation involving five substudies, before and after design. Setting: NHS hospitals in United Kingdom. Participants: Four hospitals (one in each country in the UK) participating in the first phase of the SPI (SPI1); 18 control hospitals. Intervention: The SPI1 was a compound (multicomponent) organisational intervention delivered over 18 months that focused on improving the reliability of specific frontline care processes in designated clinical specialties and promoting organisational and cultural change. Results: Senior staff members were knowledgeable and enthusiastic about SPI1. There was a small (0.08 points on a 5 point scale) but significant (P<0.01) effect in favour of the SPI1 hospitals in one of 11 dimensions of the staff questionnaire (organisational climate). Qualitative evidence showed only modest penetration of SPI1 at medical ward level. Although SPI1 was designed to engage staff from the bottom up, it did not usually feel like this to those working on the wards, and questions about legitimacy of some aspects of SPI1 were raised. Of the five components to identify patients at risk of deterioration - monitoring of vital signs (14 items); routine tests (three items); evidence based standards specific to certain diseases (three items); prescribing errors (multiple items from the British National Formulary); and medical history taking (11 items) - there was little net difference between control and SPI1 hospitals, except in relation to quality of monitoring of acute medical patients, which improved on average over time across all hospitals. Recording of respiratory rate increased to a greater degree in SPI1 than in control hospitals; in the second six hours after admission recording increased from 40% (93) to 69% (165) in control hospitals and from 37% (141) to 78% (296) in SPI1 hospitals (odds ratio for "difference in difference" 2.1, 99% confidence interval 1.0 to 4.3; P=0.008). Use of a formal scoring system for patients with pneumonia also increased over time (from 2% (102) to 23% (111) in control hospitals and from 2% (170) to 9% (189) in SPI1 hospitals), which favoured controls and was not significant (0.3, 0.02 to 3.4; P=0.173). There were no improvements in the proportion of prescription errors and no effects that could be attributed to SPI1 in non-targeted generic areas (such as enhanced safety culture). On some measures, the lack of effect could be because compliance was already high at baseline (such as use of steroids in over 85% of cases where indicated), but even when there was more room for improvement (such as in quality of medical history taking), there was no significant additional net effect of SPI1. There were no changes over time or between control and SPI1 hospitals in errors or rates of adverse events in patients in medical wards. Mortality increased from 11% (27) to 16% (39) among controls and decreased from17%(63) to13%(49) among SPI1 hospitals, but the risk adjusted difference was not significant (0.5, 0.2 to 1.4; P=0.085). Poor care was a contributing factor in four of the 178 deaths identified by review of case notes. The survey of patients showed no significant differences apart from an increase in perception of cleanliness in favour of SPI1 hospitals. Conclusions The introduction of SPI1 was associated with improvements in one of the types of clinical process studied (monitoring of vital signs) and one measure of staff perceptions of organisational climate. There was no additional effect of SPI1 on other targeted issues nor on other measures of generic organisational strengthening.
Resumo:
This work attempts to shed light to the fundamental concepts behind the stability of Multi-Agent Systems. We view the system as a discrete time Markov chain with a potentially unknown transitional probability distribution. The system will be considered to be stable when its state has converged to an equilibrium distribution. Faced with the non-trivial task of establishing the convergence to such a distribution, we propose a hypothesis testing approach according to which we test whether the convergence of a particular system metric has occurred. We describe some artificial multi-agent ecosystems that were developed and we present results based on these systems which confirm that this approach qualitatively agrees with our intuition.
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.