37 resultados para Discrete Mathematics in Computer Science
Resumo:
Online communities are prime sources of information. The Web is rich with forums and Question Answering (Q&A) communities where people go to seek answers to all kinds of questions. Most systems employ manual answer-rating procedures to encourage people to provide quality answers and to help users locate the best answers in a given thread. However, in the datasets we collected from three online communities, we found that half their threads lacked best answer markings. This stresses the need for methods to assess the quality of available answers to: 1) provide automated ratings to fill in for, or support, manually assigned ones, and; 2) to assist users when browsing such answers by filtering in potential best answers. In this paper, we collected data from three online communities and converted it to RDF based on the SIOC ontology. We then explored an approach for predicting best answers using a combination of content, user, and thread features. We show how the influence of such features on predicting best answers differs across communities. Further we demonstrate how certain features unique to some of our community systems can boost predictability of best answers.
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.
Resumo:
This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.
Resumo:
In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.
Resumo:
Uncertainty can be defined as the difference between information that is represented in an executing system and the information that is both measurable and available about the system at a certain point in its life-time. A software system can be exposed to multiple sources of uncertainty produced by, for example, ambiguous requirements and unpredictable execution environments. A runtime model is a dynamic knowledge base that abstracts useful information about the system, its operational context and the extent to which the system meets its stakeholders' needs. A software system can successfully operate in multiple dynamic contexts by using runtime models that augment information available at design-time with information monitored at runtime. This chapter explores the role of runtime models as a means to cope with uncertainty. To this end, we introduce a well-suited terminology about models, runtime models and uncertainty and present a state-of-the-art summary on model-based techniques for addressing uncertainty both at development- and runtime. Using a case study about robot systems we discuss how current techniques and the MAPE-K loop can be used together to tackle uncertainty. Furthermore, we propose possible extensions of the MAPE-K loop architecture with runtime models to further handle uncertainty at runtime. The chapter concludes by identifying key challenges, and enabling technologies for using runtime models to address uncertainty, and also identifies closely related research communities that can foster ideas for resolving the challenges raised. © 2014 Springer International Publishing.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
The behaviour of self adaptive systems can be emergent, which means that the system’s behaviour may be seen as unexpected by its customers and its developers. Therefore, a self-adaptive system needs to garner confidence in its customers and it also needs to resolve any surprise on the part of the developer during testing and maintenance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system’s behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, we propose the use of goal-based requirements models at runtime to offer self-explanation of how a system is meeting its requirements. We demonstrate the analysis of run-time requirements models to yield a self-explanation codified in a domain specific language, and discuss possible future work.
Resumo:
Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A ß-turn transition is investigated by calculating the topological complexity (in the "computational mechanics" framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the ß-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a "quasi-regular" dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
We propose a taxonomy for heterogeneity and dynamics of swarms in PSO, which separates the consideration of homogeneity and heterogeneity from the presence of adaptive and non-adaptive dynamics, both at the particle and swarm level. It thus supports research into the separate and combined contributions of each of these characteristics. An analysis of the literature shows that most recent work has focussed on only parts of the taxonomy. Our results agree with prior work that both heterogeneity and dynamics are useful. However while heterogeneity does typically improve PSO, this is often dominated by the improvement due to dynamics. Adaptive strategies used to generate heterogeneity may end up sacrificing the dynamics which provide the greatest performance increase. We evaluate exemplar strategies for each area of the taxonomy and conclude with recommendations.
Resumo:
We introduce self-interested evolutionary market agents, which act on behalf of service providers in a large decentralised system, to adaptively price their resources over time. Our agents competitively co-evolve in the live market, driving it towards the Bertrand equilibrium, the non-cooperative Nash equilibrium, at which all sellers charge their reserve price and share the market equally. We demonstrate that this outcome results in even load-balancing between the service providers. Our contribution in this paper is twofold; the use of on-line competitive co-evolution of self-interested service providers to drive a decentralised market towards equilibrium, and a demonstration that load-balancing behaviour emerges under the assumptions we describe. Unlike previous studies on this topic, all our agents are entirely self-interested; no cooperation is assumed. This makes our problem a non-trivial and more realistic one.
Resumo:
Drawing on the newest findings of politeness research, this paper proposes an interactionally grounded approach to computer-mediated discourse (CMD). Through the analysis of naturally occurring text-based synchronous interactions of a virtual team the paper illustrates that the interactional politeness approach can account for linguistic phenomena not yet fully explored in computer-mediated discourse analysis. Strategies used for compensating for the lack of audio-visual information in computer-mediated communication, strategies to compensate for the technological constraints of the medium, and strategies to aid interaction management are examined from an interactional politeness viewpoint and compared to the previous findings of CMD analysis. The conclusion of this preliminary research suggests that the endeavour to communicate along the lines of politeness norms in a work-based virtual environment contradicts some of the previous findings of CMD research (unconventional orthography, capitalization, economizing), and that other areas (such as emoticons, backchannel signals and turn-taking strategies) need to be revisited and re-examined from an interactional perspective to fully understand how language functions in this merely text-based environment.