30 resultados para Diesel engine performance
Resumo:
This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.
Resumo:
The twin goals of low and efficient fuel use and minimum emissions are increasingly being addressed by research in both the motor and the catalyst industries of the world. This study was designed to attempt to investigate these goals. For diesel engine vehicles, this can be achieved by improving the efficiency of the fuel combustion in the combustion chamber. By having a suitable oxidation catalyst in the fuel one would expect the efficiency of the fuel combustion to be increased and fewer partial oxidation products to be formed. Also by placing a catalyst converter in the exhaust system partial oxidation products may be converted to more desirable final products. Finally, in this research the net catalytic effect of using an additive treated fuel and a blank ceramic monolith to trap the metal in the exhaust gases for potential use as catalytic converter was investigated. Suitable metal additives must yield a stable solution in the fuel tank. That is, they should not react with the air, water and rust that are always present. The research was targeted on the synthesis of hydrocarbon-soluble complexes that might exhibit unusually slow rates of ligand substitution. For materials containing metal ions, these properties are best met by using multi-dentate ligands that form neutral complexes. Metal complexes have been synthesised using acetylacetone derivatives, schiff base ligands and macrocyclic polyamine ligands, as potential pro-oxidant additives. Their thermal stabilities were also investigated using a differential thermal analysis instrument. The complexes were then investigated as potential additives for use in diesel fuel. The tests were conducted under controlled conditions using a diesel combustion bomb simulating the combustion process in the D.I. diesel engine, a test bed engine, and a vehicle engine.
Resumo:
Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.
Resumo:
This study presents design and construction of a tri-generation system (thermal efficiency, 63%), powered by neat nonedible plant oils (jatropha, pongamia and jojoba oil or standard diesel fuel), besides studies on plant performance and economics. Proposed plant consumes fuel (3 l/h) and produce ice (40 kg/h) by means of an adsorption refrigerator powered from the engine waste jacket water heat. Potential savings in green house gas (GHG) emissions of trigeneration system in comparison to cogeneration (or single generation) has also been discussed.
Resumo:
Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine.Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.
Resumo:
The objective of the thesis was to analyse several process configurations for the production of electricity from biomass. Process simulation models using AspenPlus aimed at calculating the industrial performance of power plant concepts were built, tested, and used for analysis. The criteria used in analysis were performance and cost. All of the advanced systems appear to have higher efficiencies than the commercial reference, the Rankine cycle. However, advanced systems typically have a higher cost of electricity (COE) than the Rankine power plant. High efficiencies do not reduce fuel costs enough to compensate for the high capital costs of advanced concepts. The successful reduction of capital costs would appear to be the key to the introduction of the new systems. Capital costs account for a considerable, often dominant, part of the cost of electricity in these concepts. All of the systems have higher specific investment costs than the conventional industrial alternative, i.e. the Rankine power plant; Combined beat and power production (CUP) is currently the only industrial area of application in which bio-power costs can be considerably reduced to make them competitive. Based on the results of this work, AsperiPlus is an appropriate simulation platform. How-ever, the usefulness of the models could be improved if a number of unit operations were modelled in greater detail. The dryer, gasifier, fast pyrolysis, gas engine and gas turbine models could be improved.
Resumo:
The objectives of this research were to investigate the perforamnce of a rubberwood gasifier and engine with electricity generation and to identify opportunities for the implementation of such a system in Malaysia. The experimental work included the design, fabrication and commissioning of a throated downdraft gasifier in Malaysia. The gasifier was subsequently used to investigate the effect of moisture content, dry wood capacity and particle size of rubberwood on gasifier performance. Additional experiments were also conducted to investigate the influence of two different nozzle numbers and two different throat diameters on tar cracking. A total of 101 runs were completed during the duration of the research. From the experimental data, the average mass balance was found to be 92.65%. The average energy balance over the gasifier to hot raw gas was 98.7%, to cold clean gas was 102.4% and over the complete system was 101.9%. The heat loss from the gasifier was estimated to range from 10-26% of the chemical energy of the feedstock. From the downstream operation, the heat loss was estimated to range from 17-37% of the chemical energy of rubberwood feedstock. The maximum throughput for stable operation was found to be 60-70% of the maximum dry wood capacity. The gasifier was found to have a maximum turndown ratio of 5:1. It is also postulated that the phenomenon of turndown of the gasifier is due to a `bubble theory' occurring at the gasification zone, and this hypothesis is explained. For stable power output, the working range of the engine was found to be 5-33.5 kWe. The thermal efficiency and diesel displacement of the engine was found to be 17-18% and 65-70% respectively. The research also showed that rubberwood gasification in Malaysia is feasible if the price of diesel is above MR35/l and the price of wood is below MR120/tonne.
Resumo:
Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.
Resumo:
Presents a prototype modelling methodology that provides a generic approach to the creation of quantitative models of the relationships between a working environment, the direct workers and their subsequent performance. Once created for an organisation, such models can provide a prediction of how the behaviour of their workers will alter in response to changes in their working environment. The goal of this work is to improve the decision processes used in the design of the working environment. Through improving such processes, companies will gain better performance from their direct workers, and so improve business competitiveness. This paper first presents the need to model the behaviour of direct workers in manufacturing environments. To begin to address this need, a simplistic modelling framework is developed, and then this is expanded to provide a detailed modelling methodology. There then follows a description of an industrial evaluation of this methodology at Ford Motor Company. This modelling methodology has been assessed in this case study and has been found to be valid in this case. There are many challenges that this theme of research needs to address. The work described in this paper has made an important first step in this area, having gone some way to establishing a generic methodology and illustrating its potential value. Our future work will build on this foundation.
Resumo:
Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.
Resumo:
Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.
Resumo:
GraphChi is the first reported disk-based graph engine that can handle billion-scale graphs on a single PC efficiently. GraphChi is able to execute several advanced data mining, graph mining and machine learning algorithms on very large graphs. With the novel technique of parallel sliding windows (PSW) to load subgraph from disk to memory for vertices and edges updating, it can achieve data processing performance close to and even better than those of mainstream distributed graph engines. GraphChi mentioned that its memory is not effectively utilized with large dataset, which leads to suboptimal computation performances. In this paper we are motivated by the concepts of 'pin ' from TurboGraph and 'ghost' from GraphLab to propose a new memory utilization mode for GraphChi, which is called Part-in-memory mode, to improve the GraphChi algorithm performance. The main idea is to pin a fixed part of data inside the memory during the whole computing process. Part-in-memory mode is successfully implemented with only about 40 additional lines of code to the original GraphChi engine. Extensive experiments are performed with large real datasets (including Twitter graph with 1.4 billion edges). The preliminary results show that Part-in-memory mode memory management approach effectively reduces the GraphChi running time by up to 60% in PageRank algorithm. Interestingly it is found that a larger portion of data pinned in memory does not always lead to better performance in the case that the whole dataset cannot be fitted in memory. There exists an optimal portion of data which should be kept in the memory to achieve the best computational performance.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.