39 resultados para Detection sensitivity
Resumo:
Developmental dyslexia is associated with deficits in the processing of basic auditory stimuli. Yet it is unclear how these sensory impairments might contribute to poor reading skills. This study better characterizes the relationship between phonological decoding skills, the lack of which is generally accepted to comprise the core deficit in reading disabilities, and auditory sensitivity to amplitude modulation (AM) and frequency modulation (FM). Thirty-eight adult subjects, 17 of whom had a history of developmental dyslexia, completed a battery, of psychophysical measures of sensitivity to FM and AM at different modulation rates, along with a measure of pseudoword reading accuracy and standardized assessments of literacy and cognitive skills. The subjects with a history of dyslexia were significantly less sensitive than controls to 2-Hz FM and 20-Hz AM only. The absence of a significant group difference for 2-Hz AM shows that the dyslexics do not have a general deficit in detecting all slow modulations. Thresholds for detecting 2-Hz and 240-Hz FM and 20-Hz AM correlated significantly with pseudoword reading accuracy. After accounting for various cognitive skills, however, multiple regression analyses showed that detection thresholds for both 2-Hz FM and 20-Hz AM were significant and independent predictors of pseudoword reading ability in the entire sample. Thresholds for 2-Hz AM and 240-Hz FM did not explain significant additional variance in pseudoword reading skill, it is therefore possible that certain components of auditory processing of modulations are related to phonological decoding skills, whereas others are not.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.
Resumo:
Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd.
Resumo:
We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.
Resumo:
Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.
Resumo:
Background: The Melbourne Edge Test (MET) is a portable forced-choice edge detection contrast sensitivity (CS) test. The original externally illuminated paper test has been superseded by a backlit version. The aim of this study was to establish normative values for age and to assess change with visual impairment. Method: The MET was administered to 168 people with normal vision (18-93 years old) and 93 patients with visual impairment (39-97 years old). Distance visual acuity (VA) was measured with a log MAR chart. Results: In those eyes without disease, MET CS was stable until the age of 50 years (23.8 ± .7 dB) after which it decreased at a rate of ≈1.5 dB per decade. Compared with normative values, people with low vision were found to have significantly reduced CS, which could not be totally accounted for by reduced VA. Conclusions: The MET provides a quick and easy measure of CS, which highlights a reduction in visual function that may not be detectable using VA measurements. © 2004 The College of Optometrists.
Resumo:
The turning point of the refractive index (RI) sensitivity based on the multimode microfiber (MMMF) in-line Mach–Zehnder interferometer (MZI) is observed. By tracking the resonant wavelength shift of the MZI generated between the HE11 and HE12 modes in the MMMF, the surrounding RI (SRI) could be detected. Theoretical analysis demonstrates that the RI sensitivity will reach ±∞ on either side of the turning point due to the group effective RI difference (퐺) approaching zero. Significantly, the positive sensitivity exists in a very wide fiber diameter range, while the negative sensitivity can be achieved in a narrow diameter range of only 0.3 μm. Meanwhile, the experimental sensitivities and variation trend at different diameters exhibit high consistency with the theoretical results. High RI sensitivity of 10777.8 nm/RIU (RI unit) at the fiber diameter of 4.6 μm and the RI around 1.3334 is realized. The discovery of the sensitivity turning points has great significance on trace detection due to the possibility of ultrahigh RI sensitivity.
Resumo:
When the source of a tone moves with respect to a listener's ears, dichotic (or interaural) phase and amplitude modulations (PM and AM) are produced. Two experiments investigated the psychophysical characteristics of dichotic linear ramp modulations in phase and amplitude, and compared them with the psychophysics of diotic PM and AM. In experiment 1, subjects were substantially more sensitive to dichotic PM than diotic PM, but AM sensitivity was equivalent in the dichotic and diotic conditions. Thresholds for discriminating modulation direction were smaller than detection thresholds for dichotic AM, and both diotic AM and PM. Dichotic PM discrimination thresholds were similar to detection thresholds. In experiment 2, the effects of ramp duration were examined. Sensitivity to dichotic AM and PM, and diotic AM increased as duration was increased from 20 ms to 200 ms. The functions relating sensitivity to ramp duration differed across the stimuli; sensitivity to dichotic PM increased more rapidly than sensitivity to dichotic or diotic AM. This was also reflected in shorter time-constants and minimum integration times for dichotic PM detection. These findings support the hypothesis that the analysis of dichotic PM and AM rely on separate mechanisms. © 2003 Acoustical Society of America.
Resumo:
BACKGROUND: Contrast detection is an important aspect of the assessment of visual function; however, clinical tests evaluate limited spatial frequencies and contrasts. This study validates the accuracy and inter-test repeatability of a swept-frequency near and distance mobile app Aston contrast sensitivity test, which overcomes this limitation compared to traditional charts. METHOD: Twenty subjects wearing their full refractive correction underwent contrast sensitivity testing on the new near application (near app), distance app, CSV-1000 and Pelli-Robson charts with full correction and with vision degraded by 0.8 and 0.2 Bangerter degradation foils. In addition repeated measures using the 0.8 occluding foil were taken. RESULTS: The mobile apps (near more than distance, p = 0.005) recorded a higher contrast sensitivity than printed tests (p < 0.001); however, all charts showed a reduction in measured contrast sensitivity with degradation (p < 0.001) and a similar decrease with increasing spatial frequency (interaction > 0.05). Although the coefficient of repeatability was lowest for the Pelli-Robson charts (0.14 log units), the mobile app charts measured more spatial frequencies, took less time and were more repeatable (near: 0.26 to 0.37 log units; distance: 0.34 to 0.39 log units) than the CSV-1000 (0.30 to 0.93 log units). The duration to complete the CSV-1000 was 124 ± 37 seconds, Pelli-Robson 78 ± 27 seconds, near app 53 ± 15 seconds and distance app 107 ± 36 seconds. CONCLUSIONS: While there were differences between charts in contrast levels measured, the new Aston near and distance apps are valid, repeatable and time-efficient method of assessing contrast sensitivity at multiple spatial frequencies.
Resumo:
We implement an optical biosensor using long-period fibre grating immobilised with probe DNA. It has been used to detect hybridisation of target DNA, showing a high sensitivity and reusability function.
Resumo:
CONCLUSIONS: The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PURPOSE: Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. METHODS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively.
Resumo:
The newly synthesized dioxaborine dyes, derivatives of dehydroacetic acid, were tested for the detection of amines and ammonia. To discriminate the substance with efficient sensing parameters, series of ca. 20 dioxaborine dyes were synthesized and tested for reactivity with amines. The most promising one showed the fluorescent sensitivity to amines in the range of 1-4 ppm. © (2014) Trans Tech Publications.
Resumo:
Measurements of area summation for luminance-modulated stimuli are typically confounded by variations in sensitivity across the retina. Recently we conducted a detailed analysis of sensitivity across the visual field (Baldwin et al, 2012) and found it to be well-described by a bilinear “witch’s hat” function: sensitivity declines rapidly over the first 8 cycles or so, more gently thereafter. Here we multiplied luminance-modulated stimuli (4 c/deg gratings and “Swiss cheeses”) by the inverse of the witch’s hat function to compensate for the inhomogeneity. This revealed summation functions that were straight lines (on double log axes) with a slope of -1/4 extending to ≥33 cycles, demonstrating fourth-root summation of contrast over a wider area than has previously been reported for the central retina. Fourth-root summation is typically attributed to probability summation, but recent studies have rejected that interpretation in favour of a noisy energy model that performs local square-law transduction of the signal, adds noise at each location of the target and then sums over signal area. Modelling shows our results to be consistent with a wide field application of such a contrast integrator. We reject a probability summation model, a quadratic model and a matched template model of our results under the assumptions of signal detection theory. We also reject the high threshold theory of contrast detection under the assumption of probability summation over area.
Resumo:
Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.