18 resultados para Design|Architecture
Resumo:
Fibre-to-the-premises (FTTP) has been long sought as the ultimate solution to satisfy the demand for broadband access in the foreseeable future, and offer distance-independent data rate within access network reach. However, currently deployed FTTP networks have in most cases only replaced the transmission medium, without improving the overall architecture, resulting in deployments that are only cost efficient in densely populated areas (effectively increasing the digital divide). In addition, the large potential increase in access capacity cannot be matched by a similar increase in core capacity at competitive cost, effectively moving the bottleneck from access to core. DISCUS is a European Integrated Project that, building on optical-centric solutions such as Long-Reach Passive Optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. One of the key features of the project is the end-to-end approach, which promises to deliver a complete network design and a conclusive analysis of its economic viability. © 2013 IEEE.
Resumo:
In view of the increasingly complexity of services logic and functional requirements, a new system architecture based on SOA was proposed for the equipment remote monitoring and diagnosis system. According to the design principles of SOA, different levels and different granularities of services logic and functional requirements for remote monitoring and diagnosis system were divided, and a loosely coupled web services system was built. The design and implementation schedule of core function modules for the proposed architecture were presented. A demo system was used to validate the feasibility of the proposed architecture.
Resumo:
This paper details methodologies that have been explored for the fast proofing of on-chip architectures for Circular Dichroism techniques. Flow-cell devices fabricated from UV transparent Quartz are used for these experiments. The complexity of flow-cell production typically results in lead times of six months from order to delivery. Only at that point can the on-chip architecture be tested empirically and any required modifications determined ready for the next six month iteration phase. By using the proposed 3D printing and PDMS moulding techniques for fast proofing on-chip architectures the optimum design can be determined within a matter of hours prior to commitment to quartz chip production.