25 resultados para Density-lipoprotein Oxidation
Resumo:
Rheumatoid arthritis (RA) associates with excess cardiovascular risk and there is a need to assess that risk. However, individual lipid levels may be influenced by disease activity and drug use, whereas lipid ratios may be more robust. A cross-sectional cohort of 400 consecutive patients was used to establish factors that influenced individual lipid levels and lipid ratios in RA, using multiple regression models. A further longitudinal cohort of 550 patients with RA was used to confirm these findings, using generalized estimating equations. Cross-sectionally, higher C-reactive protein (CRP) levels correlated with lower levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol ([HDL-C] P = .015), whereas lipid ratios did not correlate with CRP. The findings were broadly replicated in the longitudinal data. In summary, the effects of inflammation on individual lipid levels may underestimate lipid-associated cardiovascular disease (CVD) risk in RA, thus lipid ratios may be more appropriate for CVD risk stratification in RA.
Resumo:
Background: This pilot study aimed to investigate systemic and retinal vascular function and their relationship to circulatory markers of cardiovascular risk in early age-related macular degeneration (AMD) patients without any already diagnosed systemic vascular pathologies. Methods: Fourteen patients diagnosed with early AMD and 14 age- and gender-matched healthy controls underwent blood pressure, carotid intima-media thickness (C-IMT) and peripheral arterial stiffness measurements. Retinal vascular reactivity was assessed by means of dynamic retinal vessel analysis (DVA) using a modified protocol. Blood analyses were conducted for glutathione levels and plasma levels of total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). Results: The AMD patients showed significantly greater C-IMT (p = 0.029) and augmentation index (AIx) (p = 0.042) than the age-matched controls. In addition, they demonstrated a shallower retinal arterial dilation slope (Slope AD) (p = 0.005) and a longer retinal venous reaction time (RT) to flickering light (p = 0.026). Blood analyses also revealed that AMD patients exhibited higher oxidized glutathione (GSSG) (p = 0.024), lower redox index (p = 0.043) and higher LDL-C (p = 0.033) levels than the controls. Venous RT parameter correlated positively with blood GSSG levels (r = 0.58, p = 0.038) in AMD subjects, but not in the controls (p > 0.05). Conclusions: Patients diagnosed with early AMD exhibit signs of systemic and retinal vascular alterations that correlated with known risk markers for future cardiovascular morbidity. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Resumo:
Background: Coronary heart disease (CHD) is a public health priority in the UK. The National Service Framework (NSF) has set standards for the prevention, diagnosis and treatment of CHD, which include the use of cholesterol-lowering agents aimed at achieving targets of blood total cholesterol (TC) < 5.0 mmol/L and low density lipoprotein-cholesterol (LDL-C) < 3.0 mmol/L. In order to achieve these targets cost effectively, prescribers need to make an informed choice from the range of statins available. Aim: To estimate the average and relative cost effectiveness of atorvastatin, fluvastatin, pravastatin and simvastatin in achieving the NSF LDL-C and TC targets. Design: Model-based economic evaluation. Methods: An economic model was constructed to estimate the number of patients achieving the NSF targets for LDL-C and TC at each dose of statin, and to calculate the average drug cost and incremental drug cost per patient achieving the target levels. The population baseline LDL-C and TC, and drug efficacy and drug costs were taken from previously published data. Estimates of the distribution of patients receiving each dose of statin were derived from the UK national DIN-LINK database. Results: The estimated annual drug cost per 1000 patients treated with atorvastatin was £289 000, with simvastatin £315 000, with pravastatin £333 000 and with fluvastatin £167 000. The percentages of patients achieving target are 74.4%, 46.4%, 28.4% and 13.2% for atorvastatin, simvastatin, pravastatin and fluvastatin, respectively. Incremental drug cost per extra patient treated to LDL-C and TC targets compared with fluvastafin were £198 and £226 for atorvastatin, £443 and £567 for simvastatin and £1089 and £2298 for pravastatin, using 2002 drug costs. Conclusions: As a result of its superior efficacy, atorvastatin generates a favourable cost-effectiveness profile as measured by drug cost per patient treated to LDL-C and TC targets. For a given drug budget, more patients would achieve NSF LDL-C and TC targets with atorvastatin than with any of the other statins examined.
Resumo:
Endurance-trained athletes experience a low level of postprandial lipaemia, but this rapidly increases with detraining. We sought to determine whether detraining-induced changes to postprandial metabolism influenced endothelial function and inflammation. Eight endurance-trained men each undertook two oral fat tolerance tests [blood taken fasted and for 6 h following a high-fat test meal (80 g fat, 80 g carbohydrate)]: one during a period of their normal training (trained) and one after 1 wk of no exercise (detrained). Endothelial function in the cutaneous microcirculation was assessed using laser Doppler imaging with iontophoresis in the fasted state and 4 h postprandially during each test. Fasting plasma triglyceride (TG) concentrations increased by 35% with detraining (P = 0.002), as did postprandial plasma (by 53%, P = 0.002), chylomicron (by 68%, P = 0.02) and very low-density lipoprotein (by 51%, P = 0.005) TG concentrations. Endothelial function decreased postprandially in both the trained (by 17%, P = 0.03) and detrained (by 22%, P = 0.03) conditions but did not differ significantly between the trained and detrained conditions in either the fasted or the postprandial states. These results suggest that, although fat ingestion induces endothelial dysfunction, interventions that alter postprandial TG metabolism will not necessarily concomitantly influence endothelial function.
Resumo:
The presence of inflammatory cells and MPO (myeloperoxidase) in the arterial wall after vascular injury could increase neointima formation by modification of phospholipids. The present study investigates how these phospholipids, in particular oxidized and chlorinated species, are altered within injured vessels and how they affect VSMC (vascular smooth muscle cell) remodelling processes. Vascular injury was induced in C57BL/6 mice and high fat-fed ApoE-/- (apolipoprotein E) mice by wire denudation and ligation of the left carotid artery (LCA). Neointimal and medial composition was assessed using immunohistochemistry and ESI-MS. Primary rabbit aortic SMCs (smooth muscle cells) were utilized to examine the effects of modified lipids on VSMC proliferation, viability and migration at a cellular level. Neointimal area, measured as intima-to-media ratio, was significantly larger in wire-injured ApoE-/- mice (3.62±0.49 compared with 0.83±0.25 in C57BL/6 mice, n=3) and there was increased oxidized low-density lipoprotein (oxLDL) infiltration and elevated plasma MPO levels. Relative increases in lysophosphatidylcholines and unsaturated phosphatidylcholines (PCs) were also observed in wire-injured ApoE-/- carotid arteries. Chlorinated lipids had no effect on VSMC proliferation, viability or migration whereas chronic incubation with oxidized phospholipids stimulated proliferation in the presence of fetal calf serum [154.8±14.2% of viable cells at 1 μM PGPC (1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine) compared with control, n=6]. In conclusion, ApoE-/- mice with an inflammatory phenotype develop more neointima in wire-injured arteries and accumulation of oxidized lipids in the vessel wall may propagate this effect.
Resumo:
Purpose: To investigate the relationship between retinal microvascular reactivity, circulatory markers for CVD risk and systemic antioxidative defence capacity in healthy middle-aged individuals with low to moderate risk of CVD. Methods: Retinal vascular reactivity to flickering light was assessed in 102 healthy participants (46-60 years) by means of dynamic retinal vessel analysis (DVA). Other vascular assessments included carotid intima-media thickness (C-IMT) and blood pressure (BP) measurements. Total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and blood glutathione levels in its reduced (GSH) and oxidized (GSSG) forms were also determined for each participant, along with Framingham risk scores (FRS). Results: Retinal arterial baseline diameter fluctuation (BDF) was independently, significantly and negatively influenced by LDL-C levels (β = -0.53, p = 0.027). Moreover, the arterial dilation slope (SlopeAD) was independently, significantly and positively associated with redox index (GSH: GSSG ratio, β = 0.28, p = 0.016), while the arterial constriction slope (SlopeAC) was significantly and negatively influenced by blood GSH levels (β = -0.20, p = 0.042), and positively associated with FRS (β = 0.25, p = 0.009). Venous BDF and dilation amplitude (DA) were also negatively influenced by plasma LDL-C levels (β = -0.83, p = 0.013; and β = -0.22, p = 0.028, respectively). Conclusions: In otherwise healthy individuals with low to moderate cardiovascular risk, retinal microvascular dilation and constriction responses to stress levels are influenced by systemic antioxidant capacity, and circulating markers for cardiovascular risk.
Resumo:
Elevated cholesterol in mid-life has been associated with increased risk of dementia in later life. We have previously shown that low density lipoprotein (LDL) is more oxidised in the plasma of dementia patients although total cholesterol levels remained unchanged [1]. We have investigated the hypothesis that amyloid beta production and neurodegeneration can be driven by oxidised lipids derived from LDL following the loss of blood brain barrier integrity with ageing. Therefore, we have investigated amyloid beta formation in SHSY5Y cells treated with LDL, minimally modified (ox) LDL, and lipids extracted from both forms of LDL. LDL-treated SHSY-5Y cell viability was not significantly decreased with up to 8 μg LDL/2 × 104 cells compared to untreated cells. However, 8 μg oxLDL protein/2 × 104 cells decreased the cell viability significantly by 33.7% (P < 0.05). A more significant decrease in cell viability was observed when treating cells with extracted lipids from 8 μg of LDL (by 32.7%; P < 0.01) and oxLDL (by 41%; P < 0.01). In parallel, the ratio of reduced to oxidised GSH was decreased; GSH concentrations were significantly decreased following treatment with 0.8 μg/ml oxLD-L (7.35 ± 0.58;P < 0.01), 1.6 μg/ml (5.27 ± 0.23; P < 0.001) and 4 μg/ml (5.31 ± 0.31; P < 0.001). This decrease in redox potential was associated with an increase acid sphingomyelinase activity and lipid raft formation which could be inhibited by desipramine; SHSY5Y cells treated with oxLDL, and lipids from LDL and oxLDL for 16 h showed significantly increased acid sphingomyelinase activity (5.32 ± 0.35; P < 0.05, 5.21 ± 0.6; P < 0.05, and 5.58 ± 0.44; P < 0.01, respectively) compared to control cells (2.96 ± 0.34). As amyloid beta production is driven by the activity of beta secretase and its association with lipid rafts, we investigated whether lipids from ox-LDL can influence amyloid beta by SHSY-5Y cells in the presence of oxLDL. Using ELISA and Western blot, we confirmed that secretion of amyloid beta oligomers is increased by SHSY-5Y cells in the presence of oxLDL lipids. These data suggest a mechanism whereby LDL, and more significantly oxLDL lipids, can drive amyloid beta production and cytotoxicity in neuronal cells. [1] Li L, Willets RS, Polidori MC, Stahl W, Nelles G, Sies H, Griffiths HR. Oxidative LDL modification is increased in vascular dementia and is inversely associated with cognitive performance. Free Radic Res. 2010 Mar; 44(3): 241–8.
Resumo:
Low density lipoprotein levels (LDL) are consistently elevated in cardiovascular disease. It has been suggested that those with high circulating LDL levels in mid-life may be susceptible to develop neurodegenerative diseases in later life. In the circulation, high levels of LDL are associated with increased oxidative modification (oxLDL) and nitration. We have investigated the hypothesis that disruption of blood brain barrier function by oxLDL and their lipids may increase risk of neurodegeneration in later life and that statin intervention in mid-life can mitigate the neurodegenerative effects of hyperlipidaemia. Blood from statin-naïve, normo- and hyperlipidaemic subjects (n=10/group) was collected at baseline. Hyperlipidaemic subjects received statin-intervention whereas normolipidaemic subjects did not prior to a second blood sampling, taken after 3 months. The intervention will be completed in June 2013. Plasma was separated by centrifugation (200g, 30min) and LDL was isolated by potassium bromide density gradient ultracentrifugation. Total homocysteine, LDL cholesterol, 8-isoprostane F2α levels were measured in plasma using commercial kits. LDL were analysed by agarose gel electrophoresis. LDL-lipids were extracted by partitioning in 1:1 chloroform:methanol (v/v) and conjugated to fatty acid free-BSA in serum-free EGM-2 medium (4hrs, 370C) for co-culture with human microvascular endothelial cells (HMVEC). HMVEC were maintained on polycarbonate inserts for two weeks to create a microvascular barrier. Change in barrier permeability was measured by trans-endothelial electrical resistance (TER), FITC-dextran permeability and immunohistochemistry. HMVEC glutathione (GSH) levels were measured after 2 hours by GSH-glo assay. LDL isolated from statin-naïve hyperlipidaemic subjects had higher mobility by agarose gel electrophoresis (Rf;0.53±0.06) and plasma 8-isoprostane F2α (43.5±8.42 pg/ml) compared to control subjects (0.46±0.05 and 24.2±5.37 pg/ml; p<0.05). Compared to HMVEC treatment with the LDL-lipids (5μM) from normolipidaemic subjects, LDL-lipids from hyperlipidaemic subjects increased barrier permeability (103.4±12.5 Ωcm2 v 66.7±7.3 Ωcm2,P<0.01) and decreased GSH (18.5 nmol/mg v 12.3 nmol/mg; untreated cells 26.2±3.6 nmol/mg).
Resumo:
The extremely surface sensitive technique of metastable de-excitation spectroscopy (MDS) has been utilized to probe the bonding and reactivity of crotyl alcohol over Pd(111) and provide insight into the selective oxidation pathway to crotonaldehyde. Auger de-excitation (AD) of metastable He (23S) atoms reveals distinct features associated with the molecular orbitals of the adsorbed alcohol, corresponding to emission from the hydrocarbon skeleton, the O n nonbonding, and C═C π states. The O n and C═C π states of the alcohol are reversed when compared to those of the aldehyde. Density functional theory (DFT) calculations of the alcohol show that an adsorption mode with both C═C and O bonds aligned somewhat parallel to the surface is energetically favored at a substrate temperature below 200 K. Density of states calculations for such configurations are in excellent agreement with experimental MDS measurements. MDS revealed oxidative dehydrogenation of crotyl alcohol to crotonaldehyde between 200 and 250 K, resulting in small peak shifts to higher binding energy. Intramolecular changes lead to the opposite assignment of the first two MOs in the alcohol versus the aldehyde, in accordance with DFT and UPS studies of the free molecules. Subsequent crotonaldehyde decarbonylation and associated propylidyne formation above 260 K could also be identified by MDS and complementary theoretical calculations as the origin of deactivation and selectivity loss. Combining MDS and DFT in this way represents a novel approach to elucidating surface catalyzed reaction pathways associated with a “real-world” practical chemical transformation, namely the selective oxidation of alcohols to aldehydes.