16 resultados para Demographic Dissimilarity
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (10)
- Archive of European Integration (26)
- Aston University Research Archive (16)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Bioline International (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Brock University, Canada (4)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (16)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (111)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (8)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (2)
- Institute of Public Health in Ireland, Ireland (1)
- National Center for Biotechnology Information - NCBI (3)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (455)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (19)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (2)
- University of Michigan (35)
- University of Queensland eSpace - Australia (18)
- University of Washington (5)
- WestminsterResearch - UK (1)
Resumo:
Popular dimension reduction and visualisation algorithms rely on the assumption that input dissimilarities are typically Euclidean, for instance Metric Multidimensional Scaling, t-distributed Stochastic Neighbour Embedding and the Gaussian Process Latent Variable Model. It is well known that this assumption does not hold for most datasets and often high-dimensional data sits upon a manifold of unknown global geometry. We present a method for improving the manifold charting process, coupled with Elastic MDS, such that we no longer assume that the manifold is Euclidean, or of any particular structure. We draw on the benefits of different dissimilarity measures allowing for the relative responsibilities, under a linear combination, to drive the visualisation process.