81 resultados para Decision-analysis
Resumo:
Purpose – The purpose of this paper is to examine challenges and potential of big data in heterogeneous business networks and relate these to an implemented logistics solution. Design/methodology/approach – The paper establishes an overview of challenges and opportunities of current significance in the area of big data, specifically in the context of transparency and processes in heterogeneous enterprise networks. Within this context, the paper presents how existing components and purpose-driven research were combined for a solution implemented in a nationwide network for less-than-truckload consignments. Findings – Aside from providing an extended overview of today’s big data situation, the findings have shown that technical means and methods available today can comprise a feasible process transparency solution in a large heterogeneous network where legacy practices, reporting lags and incomplete data exist, yet processes are sensitive to inadequate policy changes. Practical implications – The means introduced in the paper were found to be of utility value in improving process efficiency, transparency and planning in logistics networks. The particular system design choices in the presented solution allow an incremental introduction or evolution of resource handling practices, incorporating existing fragmentary, unstructured or tacit knowledge of experienced personnel into the theoretically founded overall concept. Originality/value – The paper extends previous high-level view on the potential of big data, and presents new applied research and development results in a logistics application.
Resumo:
Jaccard has been the choice similarity metric in ecology and forensic psychology for comparison of sites or offences, by species or behaviour. This paper applies a more powerful hierarchical measure - taxonomic similarity (s), recently developed in marine ecology - to the task of behaviourally linking serial crime. Forensic case linkage attempts to identify behaviourally similar offences committed by the same unknown perpetrator (called linked offences). s considers progressively higher-level taxa, such that two sites show some similarity even without shared species. We apply this index by analysing 55 specific offence behaviours classified hierarchically. The behaviours are taken from 16 sexual offences by seven juveniles where each offender committed two or more offences. We demonstrate that both Jaccard and s show linked offences to be significantly more similar than unlinked offences. With up to 20% of the specific behaviours removed in simulations, s is equally or more effective at distinguishing linked offences than where Jaccard uses a full data set. Moreover, s retains significant difference between linked and unlinked pairs, with up to 50% of the specific behaviours removed. As police decision-making often depends upon incomplete data, s has clear advantages and its application may extend to other crime types. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
Conventional project management techniques are not always sufficient to ensure time, cost and quality achievement of large-scale construction projects due to complexity in planning, design and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in government policies and regulations, unforeseen inflation, underestimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk management throughout the project's life cycle. However, the effectiveness of risk management depends on the technique through which the effects of risk factors are analysed/quantified. This study proposes the Analytic Hierarchy Process (AHP), a multiple attribute decision making technique, as a tool for risk analysis because it can handle subjective as well as objective factors in a decision model that are conflicting in nature. This provides a decision support system (DSS) to project management for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and a competitive business environment. The whole methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
This paper introduces a new technique in the investigation of limited-dependent variable models. This paper illustrates that variable precision rough set theory (VPRS), allied with the use of a modern method of classification, or discretisation of data, can out-perform the more standard approaches that are employed in economics, such as a probit model. These approaches and certain inductive decision tree methods are compared (through a Monte Carlo simulation approach) in the analysis of the decisions reached by the UK Monopolies and Mergers Committee. We show that, particularly in small samples, the VPRS model can improve on more traditional models, both in-sample, and particularly in out-of-sample prediction. A similar improvement in out-of-sample prediction over the decision tree methods is also shown.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Since the original Data Envelopment Analysis (DEA) study by Charnes et al. [Measuring the efficiency of decision-making units. European Journal of Operational Research 1978;2(6):429–44], there has been rapid and continuous growth in the field. As a result, a considerable amount of published research has appeared, with a significant portion focused on DEA applications of efficiency and productivity in both public and private sector activities. While several bibliographic collections have been reported, a comprehensive listing and analysis of DEA research covering its first 30 years of history is not available. This paper thus presents an extensive, if not nearly complete, listing of DEA research covering theoretical developments as well as “real-world” applications from inception to the year 2007. A listing of the most utilized/relevant journals, a keyword analysis, and selected statistics are presented.
Resumo:
Children are increasingly being recognised as a significant force in the retail market place, as primary consumers, influencers of others, and as future customers. This paper adds to the literature on children as consumers by exploring their attitudinal responses to a specific group of products: Fair Trade lines. There has been no research to date that has specifically addressed children as consumers of Fair Trade or the ethical purchase decision-making process in this area. The methodological approach taken here is an essentially interpretive and naturalistic analysis of two focus groups of school children. The analysis found that there is an urgent need to develop meaningful Fair Trade brands that combine strong brand knowledge and positive brand images to bridge the ethical purchase gap between the formation of clear ethical attitudes and actual ethical purchase behaviour. Such an approach would both capture more of the children’s primary market and influence future purchase behaviour. It is argued that Fair Trade actors should coordinate new marketing communications campaigns that build brand knowledge structures holistically around the Fair Trade process and that extend beyond merely raising consumer awareness.
Resumo:
Data envelopment analysis defines the relative efficiency of a decision making unit (DMU) as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a DMU's true efficiency as some inputs/outputs may not contribute reasonably to the efficiency measure. Traditionally, to overcome this problem weights restrictions have been imposed. This paper offers a new approach to this problem where DMUs operate a constant returns to scale technology in a single input multi-output context. The approach is based on introducing unobserved DMUs, created by adjusting the output levels of certain observed relatively efficient DMUs, reflecting a combination of technical information of feasible production levels and the DM's value judgments. Its main advantage is that the information conveyed by the DM is local, with reference to a specific observed DMU. The approach is illustrated on a real life application. © 2003 Elsevier B.V. All rights reserved.
Resumo:
This PhD thesis belongs to three main knowledge domains: operations management, environmental management, and decision making. Having the automotive industry as the key sector, the investigation was undertaken aiming at deepening the understanding of environmental decision making processes in the operations function. The central research question for this thesis is ?Why and how do manufacturing companies take environmental decisions? This PhD research project used a case study research strategy supplemented by secondary data analysis and the testing and evaluation of a proposed systems thinking model for environmental decision making. Interviews and focus groups were the main methods for data collection. The findings of the thesis show that companies that want to be in the environmental leadership will need to take environmental decisions beyond manufacturing processes. Because the benefits (including financial gain) of non-manufacturing activities are not clear yet the decisions related to product design, supply chain and facilities are fully embedded with complexity, subjectivism, and intrinsic risk. Nevertheless, this is the challenge environmental leaders will face - they may enter in a paradoxical state of their decisions – where although the risk of going greener is high, the risk of not doing it is even higher.
Resumo:
This paper analyses the determinants of the export propensity of UK small and medium-sized enterprises (SMEs) based on the 2004 Annual Small Business Survey. Particular emphasis is placed upon the relationship between innovation activities (distinguishing product from process innovation) and export performance. In general the data suggest that some 17 per cent of firms within this group sell outside the UK. Businesses that export are also characterized by high levels of innovation activity (43 per cent of exporters innovate in products, 27 per cent innovate in process and 21 per cent innovate in both). When considering product and process innovation independently we find that both impact positively on the decision to export. However, once we consider the interdependence between both innovation activities, we find no robust evidence that process innovation increases the probability to export beyond product innovation.