23 resultados para Deactivation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural evolution of a Pd/C catalyst during the liquid phase selective aerobic oxidation of cinnamyl alcohol has been followed by in situ XAFS and XPS. The fresh catalyst comprised highly dispersed, heavily oxidised Pd particles. Cinnamyl alcohol oxidation resulted in the rapid reduction of surface palladium oxide and a small degree of concomitant particle growth. These structural changes coincided with a large drop in catalytic activity. Prereduced Pd/C exhibited a significantly lower initial oxidation rate demonstrating the importance of surface metal oxide in effecting catalytic oxidation. Use of a Pd black model system confirmed that the oxide→metal transformation was the cause, and not result, of catalyst deactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 − sites to OH− and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C–H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum is one of the most widely used hydrogenation catalysts. Here we describe the translation of batch reactions to continuous flow, affording tunable C=O versus C=C hydrogenation over a Pt/SiO2 catalyst, resulting in high steady state activity and single-pass yields in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol under mild conditions. Negligible catalyst deactivation occurs under extended flow operation due to removal of reactively-formed poisons from the reaction zone. Process intensification imparts a four-fold enhancement in cinnamyl alcohol productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation-deactivation pseudo-equilibrium coefficient Qt and constant K0 (=Qt x PaT1,t = ([A1]x[Ox])/([T1]x[T])) as well as the factor of activation (PaT1,t) and rate constants of elementary steps reactions that govern the increase of Mn with conversion in controlled cationic ring-opening polymerization of oxetane (Ox) in 1,4-dioxane (1,4-D) and in tetrahydropyran (THP) (i.e. cyclic ethers which have no homopolymerizability (T)) were determined using terminal-model kinetics. We show analytically that the dynamic behavior of the two growing species (A1 and T1) competing for the same resources (Ox and T) follows a Lotka-Volterra model of predator-prey interactions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of Cu and Sn to promote the performance of a 20% Ni/Al2O3 catalyst in the deoxygenation of lipids to fuel-like hydrocarbons was investigated using model triglyceride and fatty acid feeds, as well as algal lipids. In the semi-batch deoxygenation of tristearin at 260 °C a pronounced promotional effect was observed, a 20% Ni-5% Cu/Al2O3 catalyst affording both higher conversion (97%) and selectivity to C10-C17 alkanes (99%) in comparison with unpromoted 20% Ni/Al2O3 (27% conversion and 87% selectivity to C10-C17). In the same reaction at 350 °C, a 20% Ni-1% Sn/Al2O3 catalyst afforded the best results, giving yields of C10-C17 and C17 of 97% and 55%, respectively, which contrasts with the corresponding values of 87 and 21% obtained over 20% Ni/Al2O3. Equally encouraging results were obtained in the semi-batch deoxygenation of stearic acid at 300 °C, in which the 20% Ni-5% Cu/Al2O3 catalyst afforded the highest yields of C10-C17 and C17. Experiments were also conducted at 260 °C in a fixed bed reactor using triolein − a model unsaturated triglyceride − as the feed. While both 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 achieved quantitative yields of diesel-like hydrocarbons at all reaction times sampled, the Cu-promoted catalyst exhibited higher selectivity to longer chain hydrocarbons, a phenomenon which was also observed in experiments involving algal lipids as the feed. Characterization of fresh and spent catalysts indicates that Cu enhances the reducibility of Ni and suppresses both cracking reactions and coke-induced deactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapidly rising world populations have sparked growing concerns over global food production to meet this increasing demand. Figures released by The World Bank suggest that a 50 % increase in worldwide cereal production is required by 2030. Primary amines are important intermediates in the synthesis of a wide variety of fine chemicals utilised within the agrochemical industry, and hence new 'greener' routes to their low cost manufacture from sustainable resources would permit significantly enhanced crop yields. Early synthetic pathways to primary amines employed stoichiometric (and often toxic) reagents via multi-step protocols, resulting in a large number of by-products and correspondingly high Environmental factors of 50-100 (compared with 1-5 for typical bulk chemicals syntheses). Alternative catalytic routes to primary amines have proven fruitful, however new issues relating to selectivity and deactivation have slowed commercialisation. The potential of heterogeneous catalysts for nitrile hydrogenation to amines has been demonstrated in a simplified reaction framework under benign conditions, but further work is required to improve the atom economy and energy efficiency through developing fundamental insight into nature of the active species and origin of on-stream deactivation. Supported palladium nanoparticles have been investigated for the hydrogenation of crotononitrile to butylamine (Figure 1) under favourable conditions, and the impact of reaction temperature, hydrogen pressure, support and loading upon activity and selectivity to C=C versus CºN activation assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous silica supported Ni nanoparticles have been investigated for hydrogen production from ethanol steam reforming. Ethanol reforming is structure-sensitive over Ni, and also dependent on support mesostructure; three-dimensional KIT-6 possessing interconnected mesopores offers superior metal dispersion, steam reforming activity, and on-stream stability against deactivation compared with a two-dimensional SBA-15 support.