42 resultados para Data-driven
Resumo:
This paper investigates whether the non-normality typically observed in daily stock-market returns could arise because of the joint existence of breaks and GARCH effects. It proposes a data-driven procedure to credibly identify the number and timing of breaks and applies it on the benchmark stock-market indices of 27 OECD countries. The findings suggest that a substantial element of the observed deviations from normality might indeed be due to the co-existence of breaks and GARCH effects. However, the presence of structural changes is found to be the primary reason for the non-normality and not the GARCH effects. Also, there is still some remaining excess kurtosis that is unlikely to be linked to the specification of the conditional volatility or the presence of breaks. Finally, an interesting sideline result implies that GARCH models have limited capacity in forecasting stock-market volatility.
Resumo:
Failure to detect or account for structural changes in economic modelling can lead to misleading policy inferences, which can be perilous, especially for the more fragile economies of developing countries. Using three potential monetary policy instruments (Money Base, M0, and Reserve Money) for 13 member-states of the CFA Franc zone over the period 1989:11-2002:09, we investigate the magnitude of information extracted by employing data-driven techniques when analyzing breaks in time-series, rather than the simplifying practice of imposing policy implementation dates as break dates. The paper also tests Granger's (1980) aggregation theory and highlights some policy implications of the results.
Resumo:
This article focuses on the deviations from normality of stock returns before and after a financial liberalisation reform, and shows the extent to which inference based on statistical measures of stock market efficiency can be affected by not controlling for breaks. Drawing from recent advances in the econometrics of structural change, it compares the distribution of the returns of five East Asian emerging markets when breaks in the mean and variance are either (i) imposed using certain official liberalisation dates or (ii) detected non-parametrically using a data-driven procedure. The results suggest that measuring deviations from normality of stock returns with no provision for potentially existing breaks incorporates substantial bias. This is likely to severely affect any inference based on the corresponding descriptive or test statistics.
Resumo:
This paper presents a novel intonation modelling approach and demonstrates its applicability using the Standard Yorùbá language. Our approach is motivated by the theory that abstract and realised forms of intonation and other dimensions of prosody should be modelled within a modular and unified framework. In our model, this framework is implemented using the Relational Tree (R-Tree) technique. The R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. Our R-Tree for an utterance is generated in two steps. First, the abstract structure of the waveform, called the Skeletal Tree (S-Tree), is generated using tone phonological rules for the target language. Second, the numerical values of the perceptually significant peaks and valleys on the S-Tree are computed using a fuzzy logic based model. The resulting points are then joined by applying interpolation techniques. The actual intonation contour is synthesised by Pitch Synchronous Overlap Technique (PSOLA) using the Praat software. We performed both quantitative and qualitative evaluations of our model. The preliminary results suggest that, although the model does not predict the numerical speech data as accurately as contemporary data-driven approaches, it produces synthetic speech with comparable intelligibility and naturalness. Furthermore, our model is easy to implement, interpret and adapt to other tone languages.
Resumo:
As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments – data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures – offer hope for the future.
Resumo:
This paper will explore a data-driven approach called Sales Resource Management (SRM) that can provide real insight into sales management. The DSMT (Diagnosis, Strategy, Metrics and Tools) framework can be used to solve field sales management challenges. This paper focus on the 6P's strategy of SRM and illustrates how to use them to solve the CAPS (Concentration, Attrition, Performance and Spend) challenges. © 2010 IEEE.
Resumo:
It is generally believed that the structural reforms that were introduced in India following the macro-economic crisis of 1991 ushered in competition and forced companies to become more efficient. However, whether the post-1991 growth is an outcome of more efficient use of resources or greater use of factor inputs remains an open empirical question. In this paper, we use plant-level data from 1989–1990 and 2000–2001 to address this question. Our results indicate that while there was an increase in the productivity of factor inputs during the 1990s, most of the growth in value added is explained by growth in the use of factor inputs. We also find that median technical efficiency declined in all but one of the industries between 1989–1990 and 2000–2001, and that change in technical efficiency explains a very small proportion of the change in gross value added.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
As we enter the 21st Century, technologies originally developed for defense purposes such as computers and satellite communications appear to have become a driving force behind economic growth in the United States. Paradoxically, almost all previous econometric models suggest that the largely defense-oriented federal industrial R&D funding that helped create these technologies had no discernible effect on U.S. industrial productivity growth. This paper addresses this paradox by stressing that defense procurement as well as federal R&D expenditures were targeted to a few narrowly defined manufacturing sub-sectors that produced high tech weaponry. Analysis employing data from the NBER Manufacturing Productivity Database and the BEA' s Input Output tables then demonstrates that defense procurement policies did have significant effects on the productivity performance of disaggregated manufacturing industries because of a process of procurement-driven technological change.
Resumo:
In multilevel analyses, problems may arise when using Likert-type scales at the lowest level of analysis. Specifically, increases in variance should lead to greater censoring for the groups whose true scores fall at either end of the distribution. The current study used simulation methods to examine the influence of single-item Likert-type scale usage on ICC(1), ICC(2), and group-level correlations. Results revealed substantial underestimation of ICC(1) when using Likert-type scales with common response formats (e.g., 5 points). ICC(2) and group-level correlations were also underestimated, but to a lesser extent. Finally, the magnitude of underestimation was driven in large part to an interaction between Likert-type scale usage and the amounts of within- and between-group variance. © Sage Publications.
Resumo:
Overlaying maps using a desktop GIS is often the first step of a multivariate spatial analysis. The potential of this operation has increased considerably as data sources an dWeb services to manipulate them are becoming widely available via the Internet. Standards from the OGC enable such geospatial ‘mashups’ to be seamless and user driven, involving discovery of thematic data. The user is naturally inclined to look for spatial clusters and ‘correlation’ of outcomes. Using classical cluster detection scan methods to identify multivariate associations can be problematic in this context, because of a lack of control on or knowledge about background populations. For public health and epidemiological mapping, this limiting factor can be critical but often the focus is on spatial identification of risk factors associated with health or clinical status. In this article we point out that this association itself can ensure some control on underlying populations, and develop an exploratory scan statistic framework for multivariate associations. Inference using statistical map methodologies can be used to test the clustered associations. The approach is illustrated with a hypothetical data example and an epidemiological study on community MRSA. Scenarios of potential use for online mashups are introduced but full implementation is left for further research.
Resumo:
University students encounter difficulties with academic English because of its vocabulary, phraseology, and variability, and also because academic English differs in many respects from general English, the language which they have experienced before starting their university studies. Although students have been provided with many dictionaries that contain some helpful information on words used in academic English, these dictionaries remain focused on the uses of words in general English. There is therefore a gap in the dictionary market for a dictionary for university students, and this thesis provides a proposal for such a dictionary (called the Dictionary of Academic English; DOAE) in the form of a model which depicts how the dictionary should be designed, compiled, and offered to students. The model draws on state-of-the-art techniques in lexicography, dictionary-use research, and corpus linguistics. The model demanded the creation of a completely new corpus of academic language (Corpus of Academic Journal Articles; CAJA). The main advantages of the corpus are its large size (83.5 million words) and balance. Having access to a large corpus of academic language was essential for a corpus-driven approach to data analysis. A good corpus balance in terms of domains enabled a detailed domain-labelling of senses, patterns, collocates, etc. in the dictionary database, which was then used to tailor the output according to the needs of different types of student. The model proposes an online dictionary that is designed as an online dictionary from the outset. The proposed dictionary is revolutionary in the way it addresses the needs of different types of student. It presents students with a dynamic dictionary whose contents can be customised according to the user's native language, subject of study, variant spelling preferences, and/or visual preferences (e.g. black and white).
Resumo:
We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.
Resumo:
Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.