26 resultados para Coupled-wave theory
Resumo:
A theoretical analysis of two-wave mixing in a BSO crystal is developed in the undepleted-pump approximation for a modulated signal beam. It is shown that, for a modulation of high enough frequency, significant ac amplification is possible at three distinct values of pump-beam detuning. A signal beam that is amplitude modulated by a square wave is analyzed by means of the theory, and experimental results are presented in confirmation of the analysis. Finally, it is shown that in the presence of absorption the optimum detunings for dc and ac amplification are different.
Resumo:
Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.
Resumo:
We consider non-degenerate two-wave mixing in photorefractive Bi12SiO20. It is shown theoretically that the presence of absorption and optical activity in the photorefractive media may result in a number of maxima for the gain as the frequency detuning between the two beams is varied. Further, when the beam interaction is used for optical amplification, there may also exist an optimum crystal length beyond which there is a reduction in the useful gain obtainable. Experimental results are presented in confirmation of the theory.
Resumo:
The gain of a weak signal beam is measured in the usual two-wave mixing configuration in a photorefractive BTO crystal by varying a set of parameters, namely the applied electric field, the detuning, the beam ratio and the input intensity of the pump beam. All the experimental results are shown to be in good agreement with a theory based on that of Kukhtarev et al.
Resumo:
A recently predicted resonant effect for the enhancement of two-wave mixing in photorefractive materials is investigated. The resonance occurs when the frequency of the applied ac field agrees with the eigenfrequency of the excited space-charge wave. Experimentally a clear resonance is found, as predicted by the theory, for high dc electric fields, but the resonance is smeared out for lower fields. A modified theory, taking into account the second temporal harmonic of the space-charge wave, shows good agreement with the experimental results.
Resumo:
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.
Resumo:
A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law,
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.
Resumo:
Statistical mechanics of two coupled vector fields is studied in the tight-binding model that describes propagation of polarized light in discrete waveguides in the presence of the four-wave mixing. The energy and power conservation laws enable the formulation of the equilibrium properties of the polarization state in terms of the Gibbs measure with positive temperature. The transition line T=∞ is established beyond which the discrete vector solitons are created. Also in the limit of the large nonlinearity an analytical expression for the distribution of Stokes parameters is obtained, which is found to be dependent only on the statistical properties of the initial polarization state and not on the strength of nonlinearity. The evolution of the system to the final equilibrium state is shown to pass through the intermediate stage when the energy exchange between the waveguides is still negligible. The distribution of the Stokes parameters in this regime has a complex multimodal structure strongly dependent on the nonlinear coupling coefficients and the initial conditions.
Resumo:
In the framework of 1D Nonlinear Shrödinger Equation (NSE) we demonstrate how one can control the refractive angle of a fundamental soliton beam passing through an optical lattice, by adjusting either the shape of an individual waveguide or the relative positions of waveguides. Even for a single scatterer its shape has a nontrivial effect on the refraction direction. In the case of shallow modulation we provide an analytical description based of the effect on the soliton perturbation theory. When one considers a lattice of scatterers, there emanates an additional form factor in the radiation density (RD) of emitted waves referring to the wave-soliton beating and interference inside the lattice. We concentrate on the results for two cases: periodic lattice and disordered lattice of scattering shapes. © 2011 IEEE.
Resumo:
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.