30 resultados para Continuous Variable Systems
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
With the extensive use of pulse modulation methods in telecommunications, much work has been done in the search for a better utilisation of the transmission channel.The present research is an extension of these investigations. A new modulation method, 'Variable Time-Scale Information Processing', (VTSIP), is proposed.The basic principles of this system have been established, and the main advantages and disadvantages investigated. With the proposed system, comparison circuits detect the instants at which the input signal voltage crosses predetermined amplitude levels.The time intervals between these occurrences are measured digitally and the results are temporarily stored, before being transmitted.After reception, an inverse process enables the original signal to be reconstituted.The advantage of this system is that the irregularities in the rate of information contained in the input signal are smoothed out before transmission, allowing the use of a smaller transmission bandwidth. A disadvantage of the system is the time delay necessarily introduced by the storage process.Another disadvantage is a type of distortion caused by the finite store capacity.A simulation of the system has been made using a standard speech signal, to make some assessment of this distortion. It is concluded that the new system should be an improvement on existing pulse transmission systems, allowing the use of a smaller transmission bandwidth, but introducing a time delay.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low-density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X-ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co-continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co-continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing.
Resumo:
Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of -33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10(-1) in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system.
Resumo:
We report for the first time on the limitations in the operational power range of few-mode fiber based transmission systems, employing 28Gbaud quadrature phase shift keying transponders, over 1,600km. It is demonstrated that if an additional mode is used on a preexisting few-mode transmission link, and allowed to optimize its performance, it will have a significant impact on the pre-existing mode. In particular, we show that for low mode coupling strengths (weak coupling regime), the newly added variable power mode does not considerably impact the fixed power existing mode, with performance penalties less than 2dB (in Q-factor). On the other hand, as mode coupling strength is increased (strong coupling regime), the individual launch power optimization significantly degrades the system performance, with penalties up to ∼6dB. Our results further suggest that mutual power optimization, of both fixed power and variable power modes, reduces power allocation related penalties to less than 3dB, for any given coupling strength, for both high and low differential mode delays. © 2013 Optical Society of America.
Resumo:
Over the past decade or so a number of changes have been observed in traditional Japanese employment relations (ERs) systems such as an increase in non-regular workers, a move towards performance-based systems and a continuous decline in union membership. There is a large body of Anglo-Saxon and Japanese literature providing evidence that national factors such as national institutions, national culture, and the business and economic environment have significantly influenced what were hitherto three ‘sacred’ aspects of Japanese ERs systems (ERSs). However, no research has been undertaken until now at the firm level regarding the extent to which changes in national factors influence ERSs across firms. This article develops a model to examine the impact of national factors on ER systems; and analyses the impact of national factors at the firm level ER systems. Based on information collected from two different groups of companies, namely Mitsubishi Chemical Group (MCG) and Federation of Shinkin Bank (FSB) the research finds that except for a few similarities, the impact of national factors is different on Japanese ER systems at the firm level. This indicates that the impact of national factors varies in the implementation of employment relations factors. In the case of MCG, national culture has less to do with seniority-based system. Study also reveals that the national culture factors have also less influence on an enterprise-based system in the case of FSB. This analysis is useful for domestic and international organizations as it helps to better understand the role of national factors in determining Japanese ERSs.
Resumo:
There is growing peer and donor pressure on African countries to utilize available resources more efficiently in a bid to support the ongoing efforts to expand coverage of health interventions with a view to achieving the health-related Millennium Development Goals. The purpose of this study was to estimate the technical and scale efficiency of national health systems in African continent. Methods The study applied the Data Envelopment Analysis approach to estimate the technical efficiency and scale efficiency among the 53 countries of the African Continent. Results Out of the 38 low-income African countries, 12 countries national health systems manifested a constant returns to scale technical efficiency (CRSTE) score of 100%; 15 countries had a VRSTE score of 100%; and 12 countries had a SE score of one. The average variable returns to scale technical efficiency (VRSTE) score was 95% and the mean scale efficiency (SE) score was 59%; meaning that while on average the degree of inefficiency was only 5%, the magnitude of scale inefficiency was 41%. Of the 15 middle-income countries, 5 countries, 9 countries and 5 countries had CRSTE, VRSTE and SE scores of 100%. Ten countries, six countries and 10 countries had CRSTE, VRSTE and SE scores of less than 100%; and thus, they were deemed inefficient. The average VRSTE (i.e. pure efficiency) score was 97.6%. The average SE score was 49.9%. Conclusion There are large unmet need for health and health-related services among countries of the African Continent. Thus, it would not be advisable for health policy-makers address NHS inefficiencies through reduction in excess human resources for health. Instead, it would be more prudent for them to leverage health promotion approaches and universal access prepaid (tax-based, insurance-based or mixtures) health financing systems to create demand for under utilised health services/interventions with a view to increasing ultimate health outputs to efficient target levels.
Resumo:
Background/aim: The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim af this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). Method: The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autarefractian (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. Results: On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference -0.05 (0.63) D, p = 0.41) and more negative than the SRW-5000 prescription (by -0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of -8.75D to +4.00D (mean spherical equivalent) examined. Conclusion: The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types.
Resumo:
Methods for the calculation of complexity have been investigated as a possible alternative for the analysis of the dynamics of molecular systems. “Computational mechanics” is the approach chosen to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been developed for symbolization of a continuous physical trajectory of a dynamic system. A method for calculating statistical complexity has been implemented and tested on representative systems. It is shown that the computational mechanics approach is suitable for analyzing the dynamic complexity of molecular systems and offers new insight into the process.
Resumo:
The study of complex networks has recently attracted increasing interest because of the large variety of systems that can be modeled using graphs. A fundamental operation in the analysis of complex networks is that of measuring the centrality of a vertex. In this paper, we propose to measure vertex centrality using a continuous-time quantum walk. More specifically, we relate the importance of a vertex to the influence that its initial phase has on the interference patterns that emerge during the quantum walk evolution. To this end, we make use of the quantum Jensen-Shannon divergence between two suitably defined quantum states. We investigate how the importance varies as we change the initial state of the walk and the Hamiltonian of the system. We find that, for a suitable combination of the two, the importance of a vertex is almost linearly correlated with its degree. Finally, we evaluate the proposed measure on two commonly used networks. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Kernel methods provide a way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. In this paper, we propose a novel kernel on unattributed graphs where the structure is characterized through the evolution of a continuous-time quantum walk. More precisely, given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic. With this new graph to hand, we compute the density operators of the quantum systems representing the evolutions of two suitably defined quantum walks. Finally, we define the kernel between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
The impact of alkyl chain length on the esterification of C2–C16 organic acids with C1–C4 alcohols has been systematically investigated over bulk and SBA-15 supported sulfated zirconias (SZs). Rates of catalytic esterification for methanol with acetic acid are directly proportional to the sulfur content for both SZ and SZ/SBA-15, with the high dispersion of SZ achievable in conformal coatings over mesoporous SBA-15 confering significant rate-enhancements. Esterification over the most active 0.24 mmol gcat−1 bulk SZ and 0.29 mmol gcat−1 SZ/SBA-15 materials was inversely proportional to the alkyl chain length of alcohol and acid reactants; being most sensitive to changes from methanol to ethanol and acetic to hexanoic acids respectively. Kinetic analyses reveal that these alkyl chain dependencies are in excellent accord with the Taft relationship for polar and steric effects in aliphatic systems and the enthalpy of alcohol adsorption, implicating a Langmuir–Hinshelwood mechanism. The first continuous production of methyl propionate over a SZ fixed-bed is also demonstrated.
Resumo:
Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut- practical next-generation tools can deliver to developers of Cyber- Physical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the “agile research method” taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.