21 resultados para Compound geometric
Resumo:
[μ-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4‘)iron(II)] bis(hexafluorophosphate), [Fe(btzb)3](PF6)2, crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T1/2 = 174 K and a hysteresis of about 4 K between T1/2 and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, 57Fe-Mössbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P30¯(No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)3](PF 6)2: 300 K (HS), a = 11.258(6) Å, c = 8.948(6) Å, V = 982.2(10) Å3; 100 K (LS), a = 10.989(3) Å, c = 8.702(2) Å, V = 910.1(4) Å3. The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4‘ coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe−N bond lengths change between 1.993(1) Å at 100 K in the LS state and 2.193(2) Å at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.
Resumo:
A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.
Resumo:
[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
In analogy to a common synthesis of 1-substituted 5-H tetrazoles (Tetrahedron Lett. 36 (1995)1759; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 11 (1985) 1521; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 1 (1991) 66; BGU, Belarus. Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 1 (1992) 73), the new bidentate ligand 1,2-bis(tetrazol-1-yl)ethane [endi] was synthesized and characterized by X-ray diffraction, NMR, IR and UV–Vis spectroscopy. By using iron(II) tetrafluoroborate hexahydrate the complexation with this ligand yields a 1-dimensional linear coordination polymer similar to the recently published chain compound (Inorg. Chem. 39 (2000) 1891) exhibiting a thermally induced spin-crossover phenomenon. Similar to the 1,2-bis(tetrazol-1-yl)propane-bridged compound, our 1,2-bis(tetrazol-1-yl)ethane-bridged compound shows a gradual spin transition, but the spin-crossover temperature T1/2≈140 K is found to be 10 K above the other T1/2. The T1/2 was determined by temperature-dependent 57Fe-Mössbauer, far FT-IR and UV–Vis spectroscopy as well as by temperature-dependent magnetic susceptibility measurements. Single crystals of the complex were grown in situ from a solution of the ligand and iron(II) tetrafluoroborate. The X-ray structure determinations of both the high spin as well as the low spin state of the compound revealed a solid state structure, which is comparable to that of catena-[Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 (Inorg. Chem. 39 (2000) 1891; 2nd TMR-TOSS Meeting, 4th Spin Crossover Family Meeting, Lufthansa Training Center, Seeheim/Germany, April 30–May 2, 1999). Both the 1,2-bis(tetrazol-1-yl)propane-bridged and our compound do not show a thermal hysteresis effect (J. Am. Chem. Soc. 115 (1993) 9810; Inorg. Chim. Acta 37 (1979) 169; Chem. Phys. Lett. 93 (1982) 567). The synthesis of the complex described in the experimental section yielded a fine powdered product being poorly soluble in most common solvents. The single crystal measurements were done with crystals obtained by various diffusion methods. Most of them yielded either thin needles or small hexagonal prism crystals depending on the specific conditions.
Resumo:
The synthesis and crystal structure of a novel one-dimensional Cu(II) compound [Cu(1,2-bis(tetrazol-1-yl)ethane)3](ClO4)2 are described. The single-crystal X-ray structure determination was carried out at 298 K. The molecular structure consists of a linear chain in which the Cu(II) ions are linked by three N4,N4' coordinating bis(tetrazole) ligands in syn conformation. The Cu(II) ions are in a Jahn-Teller distorted octahedral environment (Cu(1)-N(11)=2.034(2) Å, Cu(1)-N(21)=2.041(2) Å and Cu(1)-N(31)=2.391(2) Å). The Cu⋯Cu separations are 7.420(3) Å.
Resumo:
We describe the case of a dysgraphic aphasic individual-S.G.W.-who, in writing to dictation, produced high rates of formally related errors consisting of both lexical substitutions and what we call morphological-compound errors involving legal or illegal combinations of morphemes. These errors were produced in the context of a minimal number of semantic errors. We could exclude problems with phonological discrimination and phonological short-term memory. We also excluded rapid decay of lexical information and/or weak activation of word forms and letter representations since S.G.W.'s spelling showed no effect of delay and no consistent length effects, but, instead, paradoxical complexity effects with segmental, lexical, and morphological errors that were more complex than the target. The case of S.G.W. strongly resembles that of another dysgraphic individual reported in the literature-D.W.-suggesting that this pattern of errors can be replicated across patients. In particular, both patients show unusual errors resulting in the production of neologistic compounds (e.g., "bed button" in response to "bed"). These patterns can be explained if we accept two claims: (a) Brain damage can produce both a reduction and an increase in lexical activation; and (b) there are direct connections between phonological and orthographic lexical representations (a third spelling route). We suggest that both patients are suffering from a difficulty of lexical selection resulting from excessive activation of formally related lexical representations. This hypothesis is strongly supported by S.G.W.'s worse performance in spelling to dictation than in written naming, which shows that a phonological input, activating a cohort of formally related lexical representations, increases selection difficulties. © 2014 Taylor & Francis.