46 resultados para Collaborative learning flow pattern
Resumo:
The conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process.
Resumo:
Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.
Resumo:
Context traditionally has been regarded in vision research as a determinant for the interpretation of sensory information on the basis of previously acquired knowledge. Here we propose a novel, complementary perspective by showing that context also specifically affects visual category learning. In two experiments involving sets of Compound Gabor patterns we explored how context, as given by the stimulus set to be learned, affects the internal representation of pattern categories. In Experiment 1, we changed the (local) context of the individual signal classes by changing the configuration of the learning set. In Experiment 2, we varied the (global) context of a fixed class configuration by changing the degree of signal accentuation. Generalization performance was assessed in terms of the ability to recognize contrast-inverted versions of the learning patterns. Both contextual variations yielded distinct effects on learning and generalization thus indicating a change in internal category representation. Computer simulations suggest that the latter is related to changes in the set of attributes underlying the production rules of the categories. The implications of these findings for phenomena of contrast (in)variance in visual perception are discussed.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.
Resumo:
The avidity of conidia and 48-h-old germlings of Coniothyrium minitans for FITC-conjugated lectins was characterised by flow cytometry and digital microscopy. Six isolates of C. minitans representing three morphological types were compared. Binding of Con A, SBA and WGA by conidial populations varied markedly in extent and pattern between isolates, however, with increasing culture age, conidia from all isolates demonstrated a significant reduction in lectin avidity. Germling isolates bound significantly different amounts of lectins and lectin binding differed significantly with locality. Spore walls of all germlings from all isolates bound more ConA compared with hyphal apices and mature hyphal walls. In contrast, hyphal apices of the majority of germling isolates, readily bound SBA and mature hyphal walls of germling isolates bound more WGA than other regions of the germlings. Such differential lectin binding by conidia and germlings may influence their specific surface interactions and adherence characteristics.
Resumo:
Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed.
Resumo:
The discrimination of patterns that are mirror-symmetric counterparts of each other is difficult and requires substantial training. We explored whether mirror-image discrimination during expertise acquisition is based on associative learning strategies or involves a representational shift towards configural pattern descriptions that permit resolution of symmetry relations. Subjects were trained to discriminate between sets of unfamiliar grey-level patterns in two conditions, which either required the separation of mirror images or not. Both groups were subsequently tested in a 4-class category-learning task employing the same set of stimuli. The results show that subjects who had successfully learned to discriminate between mirror-symmetric counterparts were distinctly faster in the categorization task, indicating a transfer of conceptual knowledge between the two tasks. Additional computer simulations suggest that the development of such symmetry concepts involves the construction of configural, protoholistic descriptions, in which positions of pattern parts are encoded relative to a spatial frame of reference.
Resumo:
Collaborative working with the aid of computers is increasing rapidly due to the widespread use of computer networks, geographic mobility of people, and small powerful personal computers. For the past ten years research has been conducted into this use of computing technology from a wide variety of perspectives and for a wide range of uses. This thesis adds to that previous work by examining the area of collaborative writing amongst groups of people. The research brings together a number of disciplines, namely sociology for examining group dynamics, psychology for understanding individual writing and learning processes, and computer science for database, networking, and programming theory. The project initially looks at groups and how they form, communicate, and work together, progressing on to look at writing and the cognitive processes it entails for both composition and retrieval. The thesis then details a set of issues which need to be addressed in a collaborative writing system. These issues are then followed by developing a model for collaborative writing, detailing an iterative process of co-ordination, writing and annotation, consolidation, and negotiation, based on a structured but extensible document model. Implementation issues for a collaborative application are then described, along with various methods of overcoming them. Finally the design and implementation of a collaborative writing system, named Collaborwriter, is described in detail, which concludes with some preliminary results from initial user trials and testing.
Resumo:
There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.
Resumo:
The national systems of innovation (NIS) approach focuses on the patterns and the determinants of innovation processes from the perspective of nation-states. This paper reports on continuing work on the application of an NIS model to the development of technological capability in Turkey. Initial assessment of the literature shows that there are a number of alternative conceptualisations of NIS. An attempt by the Government to identify a NIS for Turkey shows the main actors in the system but does not pay sufficient attention to the processes of interactions between agents within the system. An operational model should be capable of representing these processes and interactions and assessing the strengths and weaknesses of the NIS. For industrialising countries, it is also necessary to incorporate learning mechanisms into the model. Further, there are different levels of innovation and capability in different sectors which the national perspective may not reflect. This paper is arranged into three sections. The first briefly explains the basics of the national innovation and learning system. Although there is no single accepted definition of NIS, alternative definitions reviewed share some common characteristics. In the second section, an NIS model is applied to Turkey in order to identify the elements, which characterise the country’s NIS. This section explains knowledge flow and defines the relations between the actors within the system. The final section draws on the “from imitation to innovation” model apparently so successful in East Asia and assesses its applicability to Turkey. In assessing Turkey’s NIS, the focus is on the automotive and textile sectors.
Resumo:
Background - The literature is not univocal about the effects of Peer Review (PR) within the context of constructivist learning. Due to the predominant focus on using PR as an assessment tool, rather than a constructivist learning activity, and because most studies implicitly assume that the benefits of PR are limited to the reviewee, little is known about the effects upon students who are required to review their peers. Much of the theoretical debate in the literature is focused on explaining how and why constructivist learning is beneficial. At the same time these discussions are marked by an underlying presupposition of a causal relationship between reviewing and deep learning. Objectives - The purpose of the study is to investigate whether the writing of PR feedback causes students to benefit in terms of: perceived utility about statistics, actual use of statistics, better understanding of statistical concepts and associated methods, changed attitudes towards market risks, and outcomes of decisions that were made. Methods - We conducted a randomized experiment, assigning students randomly to receive PR or non–PR treatments and used two cohorts with a different time span. The paper discusses the experimental design and all the software components that we used to support the learning process: Reproducible Computing technology which allows students to reproduce or re–use statistical results from peers, Collaborative PR, and an AI–enhanced Stock Market Engine. Results - The results establish that the writing of PR feedback messages causes students to experience benefits in terms of Behavior, Non–Rote Learning, and Attitudes, provided the sequence of PR activities are maintained for a period that is sufficiently long.
Resumo:
The paper outlines a perspective on learning how to share knowledge in the context of inter-firm networks and highlights the essential role of participation in collaborative activities. This perspective suggests that knowledge sharing is not something achieved through the simple transfer of resources, but rather is an ongoing social accomplishment in which network firms constitute and re-constitute knowledge while engaging in collaborative activities. Empirical support for this view is offered by an in-depth and multiyear study of the development of collaborative relationships between a leading racing car manufacturer and its suppliers in the Italian motorsport industry. The study shows that knowledge is generated over time through the instigation of three knowledge sharing processes: the promotion of a culture of working together, co-location and the use of resident engineers, and shared education and training.
Resumo:
We investigate the learning by exporting hypothesis by examining the effect of exporting on the subsequent innovation performance of a sample of high-technology SMEs based in the UK. We find evidence of learning by exporting, but the pattern of this effect is complex. Exporting helps high-tech SMEs innovate subsequently, but does not make them more innovation intensive. There is evidence that consistent exposure to export markets helps firms overcome the innovation hurdle, but that there is a positive scale effect of exposure to export markets which allows innovative firms to sell more of their new-to-market products on entering export markets. Service sector firms are able to reap the benefits of exposure to export markets at an earlier (entry) stage of the internationalization process than are manufacturing firms. Innovation-intensive firms exhibit a different pattern of entry to and exit from export markets from low-intensity innovators, and this is reflected in different effects of exporting. © 2012 Elsevier Ltd.
Resumo:
Theory points to the existence of a learning by exporting effect, in which exposure to export markets enhances performance through exposure to the knowledge stocks of trading partners. We investigate the learning by exporting hypothesis by examining the effect of exporting on the subsequent innovation performance of UK high-tech SMEs. We find evidence of learning by exporting, but the pattern of this effect is relatively complex. Exporting helps high-tech SMEs innovate subsequently, but does not make them more innovation intensive. There is also evidence that it is consistent exposure to export markets that helps firms overcome the innovation hurdle, but that there is a positive scale effect of exposure to export markets which allows innovative firms to sell more of their new-to-market products on entering export markets. Service sector firms are able to reap the benefits of exposure to export markets at an earlier (entry) stage of the internationalization process than are manufacturing firms. Firms producing a rapidly changing portfolio of innovative products exhibit higher churn in terms of entry to and exit from export markets than low-intensity innovators, and this is reflected in the effects of entry and exit into and out of such markets.