20 resultados para Cognition in adolescence.
Resumo:
Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.
Resumo:
Preface. The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.
Resumo:
Context: The cognitive side effects of medications with anticholinergic activity have been documented among older adults in a variety of clinical settings. However, there has been no systematic confirmation that acute or chronic prescribing of such medications lead to transient or permanent adverse cognitive outcomes. Objective: Evaluate the existing evidence regarding the effects of anticholinergic medications on cognition in older adults. Data sources: We searched the MEDLINE, OVID, and CINAHL databases from January, 1966 to January, 2008 for eligible studies. Study selection: Studies were included if the anticholinergic activity was systematically measured and correlated with standard measurements of cognitive performance. Studies were excluded if they reported case studies, case series, editorials, and review articles. Data extraction: We extracted the method used to determine anticholinergic activity of medications and its association with cognitive outcomes. Results: Twenty-seven studies met our inclusion criteria. Serum anticholinergic assay was the main method used to determine anticholinergic activity. All but two studies found an association between the anticholinergic activity of medications and either delirium, cognitive impairment or dementia. Conclusions: Medications with anticholinergic activity negatively affect the cognitive performance of older adults. Recognizing the anticholinergic activity of certain medications may represent a potential tool to improve cognition.
Resumo:
PURPOSE. To investigate objectively and noninvasively the role of cognitive demand on autonomic control of systemic cardiovascular and ocular accommodative responses in emmetropes and myopes of late-onset. METHODS. Sixteen subjects (10 men, 6 women) aged between 18 and 34 years (mean ± SD: 22.6 ± 4.4 years), eight emmetropes (EMMs; mean spherical equivalent [MSE] refractive error ± SD: 0.05 ± 0.24 D) and eight with late-onset myopia (LOMs; MSE ± SD: -3.66 ± 2.31 D) participated in the study. Subjects viewed stationary numerical digits monocularly within a Badal optical system (at both 0.0 and -3.0 D) while performing a two-alternative, forced-choice paradigm that matched cognitive loading across subjects. Five individually matched cognitive levels of increasing difficulty were used in random order for each subject. Five 20-second, continuous-objective recordings of the accommodative response measured with an open-view infrared autorefractor were obtained for each cognitive level, whereas simultaneous measurement of heart rate was continuously recorded with a finger-mounted piezoelectric pulse transducer for 5 minutes. Fast Fourier transformation of cardiovascular function allowed the relative power of the autonomic components to be assessed in the frequency domain, whereas heart period gave an indication of the time-domain response. RESULTS. Increasing the cognitive demand led to a significant reduction in the accommodative response in all subjects (0.0 D: by -0.35 ± 0.33 D; -3.0 D: by -0.31 ± 0.40 D, P < 0.001). The greater lag of LOMs compared with EMMs was not significant (P = 0.07) at both distance (0.38 ± 0.35 D) and near (0.14 ± 0.42 D). Mean heart period reduced with increasing levels of workload (P < 0.0005). LOMs exhibited a relative elevation in sympathetic system activity compared to EMMs. Within refractive groups, however, accommodative shifts with increasing cognition correlated with parasympathetic activity (r = 0.99, P < 0.001), more than with sympathetic activity (r = 0.62, P > 0.05). CONCLUSIONS. In an equivalent workload paradigm, increasing cognitive demand caused a reduction in accommodative response that was attributable principally to a concurrent reduction in the relative power of the parasympathetic component of the autonomic nervous system (ANS). The disparity in accommodative response between EMMs and LOMs, however, appears to be augmented by changes in the sympathetic nervous component of the systemic ANS. Copyright © Association for Research in Vision and Ophthalmology.