30 resultados para Coated cylinder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine.Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °C, 800 °C, and 1000 °C. Tests were performed using cylindrical specimens under strain control at ∼0.25 Hz; total strain ranges from 0.5 to 1.6 pet were investigated. At 600 °C, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 °C and 1000 °C, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °C, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pet and above 800 °C. The presence of the coating was beneficial at 800 °C for total strain rangesless than 1.2 pet. No effect of the coating was observed at 1000 °C. Crack growth in the substrate at 800 °C was similar to 600 °C; at 1000 °C, greater plasticity and oxidationrwere observed and cracks grew exclusively in a stage II manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of brittle coating precracking on the fatigue behavior of a high-activity aluminide-coated single-crystal nickel-base superalloy has been studied using hollow cylindrical specimens at test temperatures of 600 °C, 800 °C, and 1000 °C. Three types of precrack were studied: narrow precracks formed at room temperature, wide precracks formed at room temperature, and narrow precracks formed at elevated temperature. The effect of precracking on fatigue life at 600 °C was found to depend strongly on the type of precrack. No failure was observed for specimens with narrow room-temperature precracks because of crack arrest via an oxidation-induced crack closure mechanism, while the behavior of wide precracks and precracks formed at elevated temperature mirrored the non-precracked behavior. Crack retardation also occurred for narrow room-temperature precracks tested at 800 °C - in this case, fatigue cracks leading to failure initiated in a layer of recrystallized grains on the inside surface of the specimen. A significant reduction in fatigue life at 800 °C relative to non-precracked specimens was observed for wide precracks and elevated temperature precracks. The presence of precracks bypassed the initiation and growth of coating fatigue cracks necessary for failure in non-precracked material. No effect of precracking was observed at 1000 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation of chromium-containing phases, in both the B2 type β-phase coating matrix (nominally NiAl) and the substrate of high-activity-pack-aluminized single crystals of a nickel-base superalloy, is considered in this paper. An ‘edge-on’ transmission electron microscopy (TEM) technique is employed to examine the precipitation of M23X6, σ, α-Cr and other phases after coating and diffusion treatment and subsequent post-coating treatment at 850 and 950 °C. Initial precipitation is dominated by the formation of M23X6 in both the coating and substrate, however, in the case of single-crystal substrates the formation of this carbon-rich phase is not sustained. M23X6 precipitation is superceded by the formation of coherent precipitates of the α-Cr phase which effectively retains the basis but removes the superlattice of the β-matrix. Extensive precipitation of α-Cr has the effect of changing the balance of chromium to molybdenum in solution in the β-phase and further precipitation is dominated by Σ-phase intermetallics and other Cr-Mo-containing phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Heterocyclic carbene coated Au and Pd nanoparticles have been prepared by a ligand exchange reaction; although carbenes quantitatively displaced the thioether and phosphine ligands from the nanoparticle surface, the resultant nanoparticles spontaneously leached metal complexes and aggregated in solution. © 2009 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl) triethoxysilane (APTES), which were then deposited and fixed onto the surface of paper samples via a simple, dip-coating process in water at room temperature. The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much greater stability to UV-illumination than uncoated blank reference paper. Very little, or no, photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-nanoparticle-treated paper is observed. There are many other potential applications for this Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to protect their whiteness and maintain their brightness. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature sensor based on graphene coated microfiber is proposed and demonstrated. By depositing graphene onto the microfiber, the transmission optical power changes linearly along the temperature with a sensitivity of 0.03 dB / C°7. © OSA 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a graphene oxide-coated long period fibre grating (GO-LPG) is proposed for chemical sensing application. Graphene oxide (GO) has been deposited on the surface of long period grating to form a sensing layer which significantly enhances the interaction between LPG propagating light and the surrounding-medium. The sensing mechanism of GO-LPG relies on the change of grating resonance intensity against surrounding-medium refractive index (SRI). The proposed GO-LPG has been used to measure the concentrations of sugar aqueous solutions. The refractive index sensitivities with 99.5 dB/RIU in low refractive index region (1.33-1.35) and 320.6 dB/RIU in high index region (1.42-1.44) have been achieved, showing an enhancement by a factor of 3.2 and 6.8 for low and high index regions, respectively. The proposed GO-LPG can be further extended to the development of optical biochemical sensor with advantages of high sensitivity, real-time and label-free sensing.