20 resultados para Classification image technique
Resumo:
Purpose: To compare graticule and image capture assessment of the lower tear film meniscus height (TMH). Methods: Lower tear film meniscus height measures were taken in the right eyes of 55 healthy subjects at two study visits separated by 6 months. Two images of the TMH were captured in each subject with a digital camera attached to a slit-lamp biomicroscope and stored in a computer for future analysis. Using the best of two images, the TMH was quantified by manually drawing a line across the tear meniscus profile, following which the TMH was measured in pixels and converted into millimetres, where one pixel corresponded to 0.0018 mm. Additionally, graticule measures were carried out by direct observation using a calibrated graticule inserted into the same slit-lamp eyepiece. The graticule was calibrated so that actual readings, in 0.03 mm increments, could be made with a 40× ocular. Results: Smaller values of TMH were found in this study compared to previous studies. TMH, as measured with the image capture technique (0.13 ± 0.04 mm), was significantly greater (by approximately 0.01 ± 0.05 mm, p = 0.03) than that measured with the graticule technique (0.12 ± 0.05 mm). No bias was found across the range sampled. Repeatability of the TMH measurements taken at two study visits showed that graticule measures were significantly different (0.02 ± 0.05 mm, p = 0.01) and highly correlated (r = 0.52, p < 0.0001), whereas image capture measures were similar (0.01 ± 0.03 mm, p = 0.16), and also highly correlated (r = 0.56, p < 0.0001). Conclusions: Although graticule and image analysis techniques showed similar mean values for TMH, the image capture technique was more repeatable than the graticule technique and this can be attributed to the higher measurement resolution of the image capture (i.e. 0.0018 mm) compared to the graticule technique (i.e. 0.03 mm). © 2006 British Contact Lens Association.
Resumo:
Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Differential evolution is an optimisation technique that has been successfully employed in various applications. In this paper, we apply differential evolution to the problem of extracting the optimal colours of a colour map for quantised images. The choice of entries in the colour map is crucial for the resulting image quality as it forms a look-up table that is used for all pixels in the image. We show that differential evolution can be effectively employed as a method for deriving the entries in the map. In order to optimise the image quality, our differential evolution approach is combined with a local search method that is guaranteed to find the local optimal colour map. This hybrid approach is shown to outperform various commonly used colour quantisation algorithms on a set of standard images. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
Different types of sentences express sentiment in very different ways. Traditional sentence-level sentiment classification research focuses on one-technique-fits-all solution or only centers on one special type of sentences. In this paper, we propose a divide-and-conquer approach which first classifies sentences into different types, then performs sentiment analysis separately on sentences from each type. Specifically, we find that sentences tend to be more complex if they contain more sentiment targets. Thus, we propose to first apply a neural network based sequence model to classify opinionated sentences into three types according to the number of targets appeared in a sentence. Each group of sentences is then fed into a one-dimensional convolutional neural network separately for sentiment classification. Our approach has been evaluated on four sentiment classification datasets and compared with a wide range of baselines. Experimental results show that: (1) sentence type classification can improve the performance of sentence-level sentiment analysis; (2) the proposed approach achieves state-of-the-art results on several benchmarking datasets.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.