21 resultados para Choroidal Neovascularization
Resumo:
STUDY DESIGN: The effect of human intervertebral disc aggrecan on endothelial cell growth was examined using cell culture assays. OBJECTIVE: To determine the response of endothelial cells to human intervertebral disc aggrecan, and whether the amount and type of aggrecan present in the intervertebral disc may be implicated in disc vascularization. SUMMARY OF BACKGROUND DATA: Intervertebral disc degeneration has been associated with a loss of proteoglycan, and the ingrowth of blood vessels and nerves. Neovascularization is a common feature also of disc herniation. Intervertebral disc aggrecan is inhibitory to sensory nerve growth, but the effects of disc aggrecan on endothelial cell growth are not known. METHODS: Aggrecan monomers were isolated separately from the anulus fibrosus and nucleus pulposus of human lumbar intervertebral discs, and characterized to determine the amount and type of sulfated glycosaminoglycan side chains present. The effects of these aggrecan isolates on the cellular adhesion and migration of the human endothelial cell lines, HMEC-1 and EAhy-926, were examined in vitro. RESULTS: Homogenous substrata of disc aggrecan inhibited endothelial cell adhesion and cell spreading in a concentration dependent manner. In substrata choice assays, endothelial cells seeded onto collagen type I migrated over the collagen until they encountered substrata of disc aggrecan, where they either stopped migrating, retreated onto the collagen, or, more commonly, changed direction to align along the collagen-aggrecan border. The inhibitory effect of aggrecan on endothelial cell migration was concentration dependent, and reduced by enzymatic treatment of the aggrecan monomers with a combination of chondroitinase ABC and keratinase/keratinase II. Anulus fibrosus aggrecan was more inhibitory to endothelial cell adhesion than nucleus pulposus aggrecan. However, this difference did not relate to the extent to which the different aggrecan isolates were charged, as determined by colorimetric assay with 1,9-dimethylmethylene blue, or to marked differences in the distribution of chondroitin sulfated and keratan sulfated side chains. CONCLUSIONS: Human intervertebral disc aggrecan is inhibitory to endothelial cell migration, and this inhibitory effect appears to depend, in part, on the presence of glycosaminoglycan side chains on the aggrecan monomer.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Angiogenesis is an essential component of endometrial repair and regeneration following menses. Perturbation of this process is associated with menorrhagia, a common gynecological disorder that results in excessive menstrual bleeding. Angiopoietin-1 (Ang-1) promotes vascular maturation via the Tie-2 receptor, while angiopoietin-2 (Ang-2) is its natural antagonist that destabilizes vessels and initiates neovascularization in the presence of vascular endothelial growth factor. To test the hypothesis that menorrhagia arises as a result of poor signal for vascular maturation, we have examined the expression of Ang-1, Ang-2, and Tie-2 in endometrium throughout the menstrual cycle from 30 normal women and 28 patients with menorrhagia. Ribonuclease protection assay and Western blot analysis showed Ang-2 expression was consistently higher than Ang-1 in normal endometrium throughout the cycle. However, with menorrhagia Ang-1 mRNA and protein were not detected or down-regulated, while Ang-2 was observed at similar levels in both normal and menorrhagic endometrium resulting in a greater than a 50% decrease in the ratio of Ang-1 to Ang-2 protein. In situ hybridization and immunohistochemical studies supported these findings and revealed cyclical changes in the expression of Ang-1 and Ang-2. These results suggest that the angiopoietin/Tie-2 system promotes vascular remodeling in endometrium and loss of normal Ang-1 expression may contribute to the excessive blood loss observed in menorrhagia.
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
Purpose: To investigate the use of MRIA for quantitative characterisation of subretinal fibrosis secondary to nAMD. Methods: MRIA images of the posterior pole were acquired over 4 months from 20 eyes including those with inactive subretinal fibrosis and those being treated with ranibizumab for nAMD. Changes in morphology of the macula affected by nAMD were modelled and reflectance spectra at the MRIA acquisition wavelengths (507, 525, 552, 585, 596, 611 and 650nm) were computed using Monte Carlo simulation. Quantitative indicators of fibrosis were derived by matching image spectra to the model spectra of known morphological properties. Results: The model spectra were comparable to the image spectra, both normal and pathological. The key morphological changes that the model associated with nAMD were gliosis of the IS-OS junction, decrease in retinal blood and decrease in RPE melanin. However, these changes were not specific to fibrosis and none of the quantitative indicators showed a unique association with the degree of fibrosis. Moderate correlations were found with the clinical assessment, but not with the treatment program. Conclusion: MRIA can distinguish subretinal fibrosis from healthy tissue. The methods used show high sensitivity but low specificity, being unable to distinguish scarring from other abnormalities like atrophy. Quantification of scarring was not achieved with the wavelengths used due to the complex structural changes to retinal tissues in the process of nAMD. Further studies, incorporating other wavelengths, will establish whether MRIA has a role in the assessment of subretinal fibrosis in the context of retinal and choroidal pathology
Resumo:
PURPOSE: To describe changes in intraocular pressure (IOP) in the 'alternative treatments to Inhibit VEGF in Age-related choroidal Neovascularisation (IVAN)' trial (registered as ISRCTN92166560). DESIGN: Randomised controlled clinical trial with factorial design. PARTICIPANTS: Patients (n=610) with treatment naïve neovascular age-related macular degeneration were enrolled and randomly assigned to receive either ranibizumab or bevacizumab and to two regimens, namely monthly (continuous) or as needed (discontinuous) treatment. METHODS: At monthly visits, IOP was measured preinjection in both eyes, and postinjection in the study eye. OUTCOME MEASURES: The effects of 10 prespecified covariates on preinjection IOP, change in IOP (postinjection minus preinjection) and the difference in preinjection IOP between the two eyes were examined. RESULTS: For every month in trial, there was a statistically significant rise in both the preinjection IOP and the change in IOP postinjection during the time in the trial (estimate 0.02 mm Hg, 95% CI 0.01 to 0.03, p<0.001 and 0.03 mm Hg, 95% CI 0.01 to 0.04, p=0.002, respectively). There was also a small but significant increase during the time in trial in the difference in IOP between the two eyes (estimate 0.01 mm Hg, 95% CI 0.005 to 0.02, p<0.001). There were no differences between bevacizumab and ranibizumab for any of the three outcomes (p=0.93, p=0.22 and p=0.87, respectively). CONCLUSIONS: Anti-vascular endothelial growth factor agents induce increases in IOP of small and uncertain clinical significance.