17 resultados para Chlorhexidine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial contamination rate of luers of central venous catheters (CVCs) with either PosiFlow® needleless connectors or standard caps attached was investigated. The efficacy of 70% (v/v) isopropyl alcohol, 0.5% (w/v) chlorhexidine in gluconate 70% (v/v) isopropyl alcohol and 10% (w/v) aqueous povidone-iodine to disinfect the intravenous connections was also assessed. Seventy-seven patients undergoing cardiac surgery who required a CVC as part of their clinical management were randomly allocated either needleless connectors or standard caps. Patients were also designated to receive chlorhexidine/alcohol, isopropyl alcohol or povidone-iodine for pre-CVC insertion skin preparation and disinfection of the connections. After 72 h in situ the microbial contamination rate of 580 luers, 306 with standard caps and 274 with needleless connectors attached, was determined. The microbial contamination rate of the external compression seals of 274 needleless connectors was also assessed to compare the efficacy of the three disinfectants. The internal surfaces of 55 out of 306 (18%) luers with standard caps were contaminated with micro-organisms, whilst only 18 out of 274 (6.6%) luers with needleless connectors were contaminated (P<0.0001). Of those needleless connectors disinfected with isopropyl alcohol, 69.2% were externally contaminated with micro-organisms compared with 30.8% disinfected with chlorhexidine/alcohol (P<0.0001) and 41.6% with povidone-iodine (P<0.0001). These results suggest that the use of needleless connectors may reduce the microbial contamination rate of CVC luers compared with the standard cap. Furthermore, disinfection of needleless connectors with either chlorhexidine/alcohol or povidone-iodine significantly reduced external microbial contamination. Both these strategies may reduce the risk of catheter-related infections acquired via the intraluminal route. © 2003 The Hospital Infection Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms.