32 resultados para CYLINDRICAL-SHELL
Resumo:
The aim of this work is to investigate the thermochemical characteristics of Parinari polyandra Benth fruit shell. An agricultural waste residue is investigated using standard methods including thermogravimetric analysis (TGA), proximate and ultimate analysis, structural composition and bomb calorimeter. The proximate and ultimate analyses were carried out to determine the ash and fixed carbon contents, volatile matter, and elemental compositions. The structural composition analysis determined the hemicellulose, cellulose, and lignin content of the biomass. The measured calorific value obtained was 20.5. MJ/kg. The TGA and DTG profiles indicate the waste fruit shells are viable for pyrolysis reaction. The inorganic contents are relatively low with potassium found to be the most abundant element. The hemicelluloses and cellulose contents are indicative of relatively higher rate of pyrolysis and comparable with established biomass utilised for bio-oil production.
Resumo:
When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).
Resumo:
Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross-linking of the shell, allowing production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilisation. The PDMA component of adsorbed polymer shell confers the latex particle thermal and pH responsive characteristics, it also provides glass transitions at lower temperatures than that of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilisation of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilisation is achieved through thermal annealing or cross-linking of the shell at mild conditions feasible for large scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 ºC by using the lower glass transition temperature of the shell compared to that of the polystyrene cores (~108 ºC). The colloidosome microcapsules formed have a rigid membrane basically composed of a monolayer of particles. Chemical cross-linking has also been successfully achieved by confining a cross-linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations since inter-droplet cross-linking is thus avoided. The porosity and mechanical strength of microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.
Resumo:
The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins, as described in the accompanying paper.
Resumo:
Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid filled cavity. An analytical theory is developed for the case of a cylindrical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that through the nonlinear advection in the Ekman layers the librations cause the fluid to rotate more slowly. © 2010 Elsevier B.V. All rights reserved.
Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires
Resumo:
The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.
Resumo:
Purpose: Evaluating the impact of splitting toric power on patient tolerance to misorientation such as with intraocular lens rotation. Setting: University vision clinic. Methods: Healthy, non astigmats had +1.50D astigmatism induced with spectacle lenses at 90°, 135°, 180° and +3.00D at 90°. Two correcting cylindrical lenses of the opposite sign and half the power each were subsequently added to the trial frame misaligned by 0°, 5° or 10° in a random order and misorientated from the initial axis in a clockwise direction by up to 15° in 5° steps. A second group of adapted astigmats with between 1.00 and 3.00DC had their astigmatism corrected with two toric spectacle lenses of half the power separated by 0°, 5° or 10° and misorientated from the initial axis in both directions by up to 15° in 5° steps. Distance, high contrast visual acuity was measured using a computerised test chart at each lens misalignment and misorientation. Results: Misorientation of the split toric lenses caused a statistically significant drop in visual acuity (F= 70.341; p< 0.001). Comparatively better acuities were observed around 180°, as anticipated (F= 3.775; p= 0.035). Misaligning the split toric power produced no benefit in visual acuity retention with axis misorientation when subjects had astigmatism induced with a low (F= 2.190, p= 0.129) or high cylinder (F= 0.491, p= 0.617) or in the adapted astigmats (F= 0.120, p= 0.887). Conclusion: Misalignment of toric lens power split across the front and back lens surfaces had no beneficial effect on distance visual acuity, but also no negative effect. © 2013 British Contact Lens Association.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.
Resumo:
High quality CuS and CuS/ZnS core/shell nanocrystals (NCs) were synthesized in a large quantity using a facile hydrothermal method at low temperatures of 60 C and evaluated in the photodegradation of Rhodamine B (RhB) under visible light irradiation. Synthesis time plays an important role in controlling the morphology, size and photocatalytic activity of both CuS and CuS/ZnS core/shell NCs which evolve from spherical shaped particles to form rods with increasing reaction time, and after 5 h resemble "flower" shaped morphologies in which each "flower" is composed of many NCs. Photocatalytic activity originates from photo-generated holes in the narrow bandgap CuS, with encapsulation by large bandgap ZnS layers used to form the core/shell structure that improves the resistance of CuS towards photocorrosion. Such CuS/ZnS core/shell structures exhibit much higher photocatalytic activity than CuS or ZnS NCs alone under visible light illumination, and is attributed to higher charge separation rates for the photo-generated carriers in the core/shell structure. © 2013 Elsevier B.V.
Resumo:
Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability.