38 resultados para CATIONIC RESIDUES
Resumo:
The cationic polymerisation of various monomers, including cyclic ethers bearing energetic nitrate ester (-ON02) groups, substituted styrenes and isobutylene has been investigated. The main reaction studied has been the ring-opening polymerisation of 3- (nitratomethyl)-3-methyl oxetane (NIMMO) using the alcohol/BF3.0Et2 binary initiator system. A series of di-, tri- and tetrafunctional telechelic polymers has been synthesised. In order to optimise the system, achieve controlled molecular weight polymers and understand the mechanism of polymerisation the effects of certain parameters on the molecular weight distribution, as determined by Size Exclusion Chromatography, have been examined. This shows the molecular weight achieved depends on a combination of factors including -OH concentration, addition rate of monomer and, most importantly, temperature. A lower temperature and OH concentration tends to produce higher molecular weight, whereas, slower addition rates of monomer, either have no significant effect or produce a lower molecular weight polymer. These factors were used to increase the formation of a cyclic oligomer, by a side reaction, and suggest, that the polymerisation of NIMMO is complicated with endbiting and back biting reactions, along with other transfer/termination processes. These observations appear to fit the model of an active-chain end mechanism. Another cyclic monomer, glycidyl nitrate (GLYN), has been polymerised by the activated monomer mechanism. Various other monomers have been used to end-cap the polymer chains to produce hydroxy ends which are expected to form more stable urethane links, than the glycidyl nitrate ends, when cured with isocyanates. A novel monomer, butadiene oxide dinitrate (BODN), has been prepared and its homopolymerisation and copolymerisation with GL YN studied. In concurrent work the carbocationic polymerisations of isobutylene or substituted styrenes have been studied. Materials with narrow molecular weight distributions have been prepared using the diphenyl phosphate/BCl3 initiator. These systems and monomers are expected to be used in the synthesis of thermoplastic elastomers.
Resumo:
Agricultural residues from Thailand, namely stalk and rhizome of cassava plants, were employed as raw materials for bio-oil production via fast pyrolysis technology. There were two main objectives of this project. The first one was to determine the optimum pyrolysis temperature for maximising the organics yield and to investigate the properties of the bio-oils produced. To achieve this objective, pyrolysis experiments were conducted using a bench-scale (150 g/h) reactor system, followed by bio-oil analysis. It was found that the reactor bed temperature that could give the highest organics yield for both materials was 490±15ºC. At all temperatures studied, the rhizome gave about 2-4% higher organics yields than the stalk. The bio-oil derived from the rhizome had lower oxygen content, higher calorific value and better stability, thus indicating better quality than that produced from the stalk. The second objective was to improve the bio-oil properties in terms of heating value, viscosity and storage stability by the incorporation of catalyst into the pyrolysis process. Catalytic pyrolysis was initially performed in a micro-scale reactor to screen a large number of catalysts. Subsequently, seven catalysts were selected for experiments with larger-scale (150 g/h) pyrolysis unit. The catalysts were zeolite and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F), commercial catalysts (Criterion-534 and MI-575), copper chromite and ash. Additionally, the combination of two catalysts in series was investigated. These were Criterion-534/ZSM-5 and Al-MSU-F/ZSM-5. The results showed that all catalysts could improve the bio-oils properties as they enhanced cracking and deoxygenation reactions and in some cases such as ZSM-5, Criterion-534 and Criterion-534/ZSM-5, valuable chemicals like hydrocarbons and light phenols were produced. The highest concentration of these compounds was obtained with Criterion-534/ZSM-5.
Resumo:
Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.
Resumo:
The use of liposomes as vaccine adjuvants has been investigated extensively over the last few decades. In particular, cationic liposomal adjuvants have drawn attention, with dimethyldioctadecylammonium (DDA) liposomes as a prominent candidate. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulators has arisen as a strategy in the development of novel adjuvant systems in recent years. One such adjuvant system is CAF01. In this review, we summarize the immunological properties making CAF01 a promising versatile adjuvant system, which was developed to mediate protection against tuberculosis (TB) but, in addition, has shown promising protective efficacy against other infectious diseases requiring different immunological profiles. Further, we describe the stabilization properties that make CAF01 suitable in vaccine formulation for the developing world, which in addition to vaccine efficacy, are important prerequisites for any novel TB vaccine to reach global implementation. The encouraging nonclinical data led to a preclinical vaccine toxicology study of the TB model vaccine, Ag85B-ESAT-6/CAF01, that concluded that CAF01 has a satisfactory safety profile to advance the vaccine into phase I clinical trials, which are scheduled to start in 2009.
Resumo:
The adjuvanticity of liposomes can be directed through formulation to develop a safe yet potent vaccine candidate. With the addition of the cationic lipid dimethyldioctadecylammonium bromide (DDA) to stable neutral distearoylphosphatidylcholine (DSPC):cholesterol (Chol) liposomes, vesicle size reduces while protein entrapment increases. The addition of the immunomodulator, trehalose 6,6-dibehenate (TDB) to either the neutral or cationic liposomes did not affect the physiochemical characteristics of these liposome vesicles. However, the protective immune response, as indicated by the amount of IFN-? production, increases considerably when TDB is present. High levels of IFN-? were observed for cationic liposomes; however, there was a marked reduction in IFN-? release over time. Conversely, for neutral liposomes containing TDB, although the initial amount of IFN-? was slightly lower than the cationic equivalent, the overall protective immune responses of these neutral liposomes were effectively maintained over time, generating good levels of protection. To that end, although the addition of DSPC and Chol reduced the protective immunity of DDA:TDB liposomes, relatively high protection was observed for the neutral counterpart, DSPC:Chol:TDB, which may offer an effective neutral alternative to the DDA:TDB cationic system, especially for the delivery of either zwitterionic (neutral) or cationic molecules or antigens.
Resumo:
The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).
Resumo:
Liposomes remain at the forefront of vaccine design due to their well documented abilities to act as delivery vehicles and adjuvants. Liposomes have been described to initiate an antigen depot-effect, thereby increasing antigen exposure to circulating antigen-presenting cells. More recently, in-depth reviews have focussed on inherent immunostimulatory abilities of various cationic lipids, the use of which is consequently of interest in the development of subunit protein vaccines which when delivered without an adjuvant are poorly immunogenic. The importance of liposomes for the mediation of an antigen depot-effect was examined by use of a dual-radiolabelling technique thereby allowing simultaneous detection of liposomal and antigenic components and analysis of their pharmacokinetic profile. In addition to investigating the biodistribution of these formulations, their physicochemical properties were analysed and the ability of the various liposome formulations to elicit humoral and cell-mediated immune responses was investigated. Our results show a requirement of cationic charge and medium/strong levels of antigen adsorption to the cationic liposome in order for both a liposome and antigen depot-effect to occur at the injection site. The choice of injection route had little effect on the pharmacokinetics or immunogenicity observed. In vitro, cationic liposomes were more cytotoxic than neutral liposomes due to significantly enhanced levels of cell uptake. With regards to the role of bilayer fluidity, liposomes expressing more rigid bilayers displayed increased retention at the injection site although this did not necessarily result in increased antigen retention. Furthermore, liposome bilayer rigidity did not necessarily correlate with improved immunogenicity. In similar findings, liposome size did not appear to control liposome or antigen retention at the injection site. However, a strong liposome size correlation between splenocyte proliferation and production of IL-10 was noted; specifically immunisation with large liposomes lead to increased levels of splenocyte proliferation coupled with decreased IL-10 production.
Resumo:
Several cationic initiator systems were developed and used to polymerise oxetane with two oxonium ion initiator systems being investigated in depth. The first initiator system was generated by the elimination of a chloride group from a chloro methyl ethyl ether. Adding a carbonyl co-catalyst to a carbocationic centre generated the second initiator system. It was found that the anion used to stabilise the initiator was critical to the initial rate of polymerisation of oxetane with hexafluoroantimonate resulting in the fastest polymerisations. Both initiator systems could be used at varying monomer to initiator concentrations to control the molecular number average, Mn, of the resultant polymer. Both initiator systems showed living characteristics and were used to polymerise further monomers and generate higher molecular weight material and block copolymers. Oxetane and 3,3-dimethyl oxetane can both be polymerised using either oxonium ion initiator system in a variety of DCM or DCM/1,4-dioxane solvent mixtures. The level of 1,4-dioxane does have an impact on the initial rate of polymerisation with higher levels resulting in lower initial rates of polymerisation but do tend to result in higher polydispersities. The level of oligomer formation is also reduced as the level of 1,4-dioxane is increased. 3,3-bis-bromomethyl oxetane was also polymerised but a large amount of hyperbranching was seen at the bromide site resulting in a difficult to solvate polymer system. Multifunctional initiator systems were also generated using the halide elimination reactions with some success being achieved with 1,3,5-tris-bromomethyl-2,4,6-tris-methyl-benzene derived initiator system. This offered some control over the molecular number average of the resultant polymer system.
Resumo:
Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.
Resumo:
The VPAC(1) receptor belongs to family B of G protein-coupled receptors (GPCR-B) and is activated upon binding of the vasoactive intestinal peptide (VIP). Despite the recent determination of the structure of the N terminus of several members of this receptor family, little is known about the structure of the transmembrane (TM) region and about the molecular mechanisms leading to activation. In the present study, we designed a new structural model of the TM domain and combined it with experimental mutagenesis experiments to investigate the interaction network that governs ligand binding and receptor activation. Our results suggest that this network involves the cluster of residues Arg(188) in TM2, Gln(380) in TM7, and Asn(229) in TM3. This cluster is expected to be altered upon VIP binding, because Arg(188) has been shown previously to interact with Asp(3) of VIP. Several point mutations at positions 188, 229, and 380 were experimentally characterized and were shown to severely affect VIP binding and/or VIP-mediated cAMP production. Double mutants built from reciprocal residue exchanges exhibit strong cooperative or anticooperative effects, thereby indicating the spatial proximity of residues Arg(188), Gln(380), and Asn(229). Because these residues are highly conserved in the GPCR-B family, they can moreover be expected to have a general role in mediating function.
Resumo:
The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.
Resumo:
The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.
Terminal galactose residues on transferrin are increased in mid-life adults compared to young adults
Resumo:
Humans undergo biological ageing at different rates. This associates with functional decline in a number of physiological systems and increasing incidence of age-related pathologies. The discovery of robust biomarkers of ageing could be used to identify early divergence from a path of healthy ageing towards age-related disease. In the present study, we undertook proteomic analysis of plasma from healthy young men (mean age = 21.4 ± 1.5 years) and healthy mid-life men (mean age = 57.0 ±1.6 years). We identified twelve spots including transferrin, complement C3b and transthyretin that differed in abundance between the age groups. Transferrin spots showed an acidic pI shift in older males. Sandwich ELISAs were used to investigate the changes further. C3b levels were below the level of detection by ELISA and plasma concentrations of total transferrin or transthyretin were not different between the age groups studied here. However, analysis of transferrin N-glycan structures showed an increase in terminal galactose residues in older men, suggesting that the loss of terminal N-acetyl neuraminic acid residues contributes to the more acid pI of transferrin spots observed with age. Terminal galactosylation of transferrin may be a biomarker of healthy ageing and is now under investigation in the MARKAGE study.
Resumo:
Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.
Resumo:
Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.