18 resultados para CATECHOL-O-METHYLTRANSFERASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself. • Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDS • The first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed. • The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates. • The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS - To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS - Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS - The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS - The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • 6-Mercaptopurine (6-MP) and azathioprine (AZA) are both inactive prodrugs that require intracellular activation into the active 6-thioguanine nucleotides (6-TGNs). • This metabolic process undergoes three different competitive pathways that are catalysed by three different enzymes; xanthine oxidase (XO), thiopurine methyltransferase (TPMT) and inosine triphosphatase (ITPA), all of which exhibit genetic polymorphisms. • Although the impact of genetic variation in the TPMT gene on treatment outcome and toxicity has been demonstrated, the role of other polymorphisms remains less well known. WHAT THIS STUDY ADDS • New information on the allelic variation of these three enzymes (XO, TPMT and ITPA) and their influence on 6-MP/AZA metabolism and toxicity. • Confirmation of the association of TPMT polymorphism with haematological toxicity. • Identified potential genetic characteristics that may contribute to higher risk of adverse events (such as ITPA IVS2+21A→C mutation). AIMS - To examine the allelic variation of three enzymes involved in 6-mercaptopurine/azathioprine (6-MP/AZA) metabolism and evaluate the influence of these polymorphisms on toxicity, haematological parameters and metabolite levels in patients with acute lymphoblastic leukaemia (ALL) or inflammatory bowel disease (IBD). METHODS - Clinical data and blood samples were collected from 19 ALL paediatric patients and 35 IBD patients who were receiving 6-MP/AZA therapy. All patients were screened for seven genetic polymorphisms in three enzymes involved in mercaptopurine metabolism [xanthine oxidase, inosine triphosphatase (C94→A and IVS2+21A→C) and thiopurine methyltransferase]. Erythrocyte and plasma metabolite concentrations were also determined. The associations between the various genotypes and myelotoxicity, haematological parameters and metabolite concentrations were determined. RESULTS - Thiopurine methyltransferase variant alleles were associated with a preferential metabolism away from 6-methylmercaptopurine nucleotides (P = 0.008 in ALL patients, P = 0.038 in IBD patients) favouring 6-thioguanine nucleotides (6-TGNs) (P = 0.021 in ALL patients). Interestingly, carriers of inosine triphosphatase IVS2+21A→C variants among ALL and IBD patients had significantly higher concentrations of the active cytotoxic metabolites, 6-TGNs (P = 0.008 in ALL patients, P = 0.047 in IBD patients). The study confirmed the association of thiopurine methyltransferase heterozygosity with leucopenia and neutropenia in ALL patients and reported a significant association between inosine triphosphatase IVS2+21A→C variants with thrombocytopenia (P = 0.012). CONCLUSIONS - Pharmacogenetic polymorphisms in the 6-MP pathway may help identify patients at risk for associated toxicities and may serve as a guide for dose individualization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.