22 resultados para Bovine, Bone histomorphometry, Mechanical stability, Endochondral ossification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 °C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films. © 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (oneway analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P < 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New sol-gel functionalized poly-ethylene glycol (PEGM)/SiO2-CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si-O-Si bonds. Bioactive and mechanical properties were investigated for a series of hybrids containing varying organic/inorganic ratios and PEG molecular weights. In contrast to the unmodified PEG/SiO2-CaO hybrids, which rapidly dissolved and crumbled, the epoxy modified hybrids exhibited good mechanical properties and bioactivity. The compressive strength and Young's modulus were greater for higher molecular weight PEGM hybrids (PEGM600 compared to PEGM300). Compressive strengths of 138 MPa and 81 MPa were found for the 50: 50 and 60: 40 organic/inorganic hybrid samples respectively, which are comparable with cortical bone. Young's modulus values of ∼800 MPa were obtained for the 50 : 50 and 60 : 40 organic/inorganic hybrids. Bioactivity tests were conducted by immersing the hybrids into simulated body fluid and observing the formation of apatite. Apatite formation was observed within 24 hours of immersion. PEGM600 hybrids showed enhanced apatite formation compared to PEGM300 hybrids. Increased apatite formation was observed with increasing organic/inorganic ratio. 70 : 30 and 60 : 40 hybrids exhibited the greatest apatite formation. All PEGM hybrids samples had good cell viability and proliferation. The 60 : 40 PEGM600 hybrids displayed the optimal combination of bioactivity and mechanical strength. The bioactivity of these hybrids, combined with the enhanced mechanical properties, demonstrate that these materials have significant potential for bone regeneration applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt processing is a critical step in the manufacture of polymer articles and is even more critical when dealing with inhomogeneous polymer-clay nanocomposites systems. The chemical composition, and in particular the clay type and its organic modification, also plays a major contribution in determining the final properties and in particular the thermal and long-term oxidative stability of the resulting polymer nanocomposites. Proper selection and tuning of the process variable should, in principle, lead to improved characteristics of the fabricated product. With multiphase systems containing inorganic nanoclays, however, this is not straightforward and it is often the case that the process conditions are chosen initially to improve one or more desired properties at the expense of others. This study assesses the influence of organo-modified clays and the processing parameters (extrusion temperature and screw speed) on the rheological and morphological characteristics of polymer nanocomposites as well as on their melt and thermo-oxidative stability. Nanocomposites (PPNCs) based on PP, maleated PP and organically modified clays were prepared in different co-rotating twin-screw extruders ranging from laboratory scale to semi-industrial scale. Results show that the amount of surfactant present in similar organo-modified clays affects differently the thermo-oxidative stability of the extruded PPNCs and that changes in processing conditions affect the clay morphology too. By choosing an appropriate set of tuned process variables for the extrusion process it would be feasible to selectively fabricate polymer-clay nanocomposites, with the desired mechanical and thermo-oxidative characteristics. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MCM-41's limited hydrothermal stability has been often related to the hydrolysis of Si-O-Si bonds due to the low degree of condensation, its thin walls or a combination of them. In this work, evidence for an additional factor is provided; a physical effect that occurs during the drying of the hydrothermally treated calcined material due to the intense capillary stress exerted in water. Depending on both physical (i.e. mechanical) and chemical (i.e. hydrolysis) resistances, the structure undergoes differently. Three MCM-41 samples with different degree of condensation were investigated. The most remarkable results are found with un-aged TEOS based material, which gets fully disordered and shrunk for all applied hydrothermal temperatures in water. Comparison between water and a low-surface-tension-solvent drying revealed that capillarity is responsible for the loss of ordering (and shrinkage) at moderate hydrothermal temperatures. The material's structure is hexagonal and shrinkage-free under the low-surface-tension-solvent route. At a high hydrothermal temperature, hydrolysis is extensive and responsible for the loss of ordering. The other remarkable finding regards the aged MCM-41 mesostructure that maintains the hexagonal features at all applied temperatures in water, and it is more stable against capillarity at high temperature. The Na-metasilicate based material is mechanically very stable and gets disordered at high temperature due to hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect. The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes. Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g. amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body and assess the stimulation levels are required.