25 resultados para Boundary value problems on manifolds
Resumo:
An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.
Resumo:
An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include
Resumo:
A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.
Resumo:
We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson's implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Resumo:
For many decades, the Kingdom of Saudi Arabia has been widely known for being a reliable oil exporter. This fact, however, has not exempted it from facing significant domestic energy challenges. One of the most pressing of these challenges involves bridging the widening electricity supply-demand gap where, currently, the demand is growing at a very fast rate. One crucial means to address this challenge is through delivering power supply projects with maximum efficiency. Project delivery delay, however, is not uncommon in this highly capital-intensive industry, indicating electricity supplies are not coping with the demand increases. To provide a deeper insight into the challenges of project implementation and efficient practice, this research adopts a pragmatic approach by triangulating literature, questionnaires and semi-structured interviews. The research was conducted in the Saudi Arabian power supply industry – Western Operating Area. A total of 105 usable questionnaires were collected, and 28 recorded, semi-structured interviews were conducted, analysed and synthesised to produce a conceptual model of what constitutes the project implementation challenges in the investigated industry. This was achieved by conducting a comprehensive ranking analysis applied to all 58 identified and surveyed factors which, according to project practitioners in the investigated industry, contribute to project delay. 28 of these project delay factors were selected as the "most important" ones. Factor Analysis was employed to structure these 28 most important project delay factors into the following meaningful set of 7 project implementation challenges: Saudi Electricity Company's contractual commitments, Saudi Electricity Company's communication and coordination effectiveness, contractors' project planning and project control effectiveness, consultant-related aspects, manpower challenges and material uncertainties, Saudi Electricity Company's tendering system, and lack of project requirements clarity. The study has implications for industry policy in that it provides a coherent assessment of the key project stakeholders' central problems. From this analysis, pragmatic recommendations are proposed that, if enacted, will minimise the significance of the identified problems on future project outcomes, thus helping to ensure the electricity supply-demand gap is diminished.
Resumo:
A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.
Resumo:
We present an analytical model for describing complex dynamics of a hybrid system consisting of resonantly coupled classical resonator and quantum structures. Classical resonators in our model correspond to plasmonic metamaterials of various geometries, as well as other types of nano- and microstructure, the optical responses of which can be described classically. Quantum resonators are represented by atoms or molecules, or their aggregates (for example, quantum dots, carbon nanotubes, dye molecules, polymer or bio-molecules etc), which can be accurately modelled only with the use of the quantum mechanical approach. Our model is based on the set of equations that combines well established density matrix formalism appropriate for quantum systems, coupled with harmonic-oscillator equations ideal for modelling sub-wavelength plasmonic and optical resonators. As a particular example of application of our model, we show that the saturation nonlinearity of carbon nanotubes increases multifold in the resonantly enhanced near field of a metamaterial. In the framework of our model, we discuss the effect of inhomogeneity of the carbon-nanotube layer (bandgap value distribution) on the nonlinearity enhancement. © 2012 IOP Publishing Ltd.