16 resultados para Blended learning model
Filtro por publicador
- JISC Information Environment Repository (5)
- Repository Napier (3)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Karlstad University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Boston University Digital Common (7)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (24)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (16)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (8)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (6)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Ministerio de Cultura, Spain (70)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (342)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Aberto da Universidade Aberta de Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (7)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- Repositorio Institucional UNISALLE - Colombia (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.