18 resultados para Bladder and bowel dysfunction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Subclinical hypothyroidism (SCH) and cognitive dysfunction are both common in the elderly and have been linked. It is important to determine whether T4 replacement therapy in SCH confers cognitive benefit. Objective: Our objective was to determine whether administration of T4 replacement to achieve biochemical euthyroidism in subjects with SCH improves cognitive function. Design and Setting: We conducted a double-blind placebo-controlled randomized controlled trial in the context of United Kingdom primary care. Patients: Ninety-four subjects aged 65 yr and over (57 females, 37 males) with SCH were recruited from a population of 147 identified by screening. Intervention: T4 or placebo was given at an initial dosage of one tablet of either placebo or 25 µg T4 per day for 12 months. Thyroid function tests were performed at 8-weekly intervals with dosage adjusted in one-tablet increments to achieve TSH within the reference range for subjects in treatment arm. Fifty-two subjects received T4 (31 females, 21 males; mean age 73.5 yr, range 65–94 yr); 42 subjects received placebo (26 females, 16 males; mean age 74.2 yr, 66–84 yr). Main Outcome Measures: Mini-Mental State Examination, Middlesex Elderly Assessment of Mental State (covering orientation, learning, memory, numeracy, perception, attention, and language skills), and Trail-Making A and B were administered. Results: Eighty-two percent and 84% in the T4 group achieved euthyroidism at 6- and 12-month intervals, respectively. Cognitive function scores at baseline and 6 and 12 months were as follows: Mini-Mental State Examination T4 group, 28.26, 28.9, and 28.28, and placebo group, 28.17, 27.82, and 28.25 [not significant (NS)]; Middlesex Elderly Assessment of Mental State T4 group, 11.72, 11.67, and 11.78, and placebo group, 11.21, 11.47, and 11.44 (NS); Trail-Making A T4 group, 45.72, 47.65, and 44.52, and placebo group, 50.29, 49.00, and 46.97 (NS); and Trail-Making B T4 group, 110.57, 106.61, and 96.67, and placebo group, 131.46, 119.13, and 108.38 (NS). Linear mixed-model analysis demonstrated no significant changes in any of the measures of cognitive function over time and no between-group difference in cognitive scores at 6 and 12 months. Conclusions: This RCT provides no evidence for treating elderly subjects with SCH with T4 replacement therapy to improve cognitive function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare neurodegenerative disorder associated with parkinsonism, ataxia, and autonomic dysfunction. Its pathology is primarily subcortical comprising vacuolation, neuronal loss, gliosis, and α-synuclein-immunoreactive glial cytoplasmic inclusions (GO). To quantify cerebellar pathology in MSA, the density and spatial pattern of the pathological changes were studied in α-synuclein-immunolabelled sections of the cerebellar hemisphere in 10 MSA and 10 control cases. In MSA, densities of Purkinje cells (PC) were decreased and vacuoles in the granule cell layer (GL) increased compared with controls. In six MSA cases, GCI were present in cerebellar white matter. In the molecular layer (ML) and GL of MSA, vacuoles were clustered, the clusters exhibiting a regular distribution parallel to the edge of the folia. Purkinje cells were randomly or regularly distributed with large gaps between surviving cells. Densities of glial cells and surviving neurons in the ML and surviving cells and vacuoles in the GL were negatively correlated consistent with gliosis and vacuolation in response to neuronal loss. Principal components analysis (PCA) suggested vacuole densities in the ML and vacuole density and cell losses in the GL were the main source of neuropathological variation among cases. The data suggest that: (1) cell losses and vacuolation of the GCL and loss of PC were the most significant pathological changes in the cases studied, (2) pathological changes were topographically distributed, and (3) cerebellar pathology could influence cerebral function in MSA via the cerebello-dentato-thalamic tract.