52 resultados para Balanced Scorecard implementation, management control systems
Resumo:
In recent years the topic of risk management has moved up the agenda of both government and industry, and private sector initiatives to improve risk and internal control systems have been mirrored by similar promptings for change in the public sector. Both regulators and practitioners now view risk management as an integral part of the process of corporate governance, and an aid to the achievement of strategic objectives. The paper uses case study material on the risk management control system at Birmingham City Council to extend existing theory by developing a contingency theory for the public sector. The case demonstrates that whilst the structure of the control system fits a generic model, the operational details indicate that controls are contingent upon three core variables—central government policies, information and communication technology and organisational size. All three contingent variables are suitable for testing the theory across the broader public sector arena.
Resumo:
The purpose of this paper is to delineate a green supply chain (GSC) performance measurement framework using an intra-organisational collaborative decision-making (CDM) approach. A fuzzy analytic network process (ANP)-based green-balanced scorecard (GrBSc) has been used within the CDM approach to assist in arriving at a consistent, accurate and timely data flow across all cross-functional areas of a business. A green causal relationship is established and linked to the fuzzy ANP approach. The causal relationship involves organisational commitment, eco-design, GSC process, social performance and sustainable performance constructs. Sub-constructs and sub-sub-constructs are also identified and linked to the causal relationship to form a network. The fuzzy ANP approach suitably handles the vagueness of the linguistics information of the CDM approach. The CDM approach is implemented in a UK-based carpet-manufacturing firm. The performance measurement approach, in addition to the traditional financial performance and accounting measures, aids in firms decision-making with regard to the overall organisational goals. The implemented approach assists the firm in identifying further requirements of the collaborative data across the supply-cain and information about customers and markets. Overall, the CDM-based GrBSc approach assists managers in deciding if the suppliers performances meet the industry and environment standards with effective human resource. © 2013 Taylor & Francis.
Resumo:
The purpose of this paper is to theorise the changes surrounding the introduction of a management control innovation, total quality management (TQM) techniques, within Telecom Fiji Limited. Using institutional theory and drawing on empirical evidence from multiple sources including interviews, discussions and documents, the paper explicates the institutionalization of these TQM practices. The focus of the paper is the micro-processes and practice changes around TQM implementation, rather than the influence of the macro-level structures that are often linked with institutional theory. The change agents used Quality Action Teams and the National Quality Council to introduce new TQM routines. The present study extends the scope of institutional analysis by explaining how institutional contradictions impact to create and make space for institutional entrepreneurs, who in turn, modify existing routines or introduce new routines in fluid organizational environments which also exhibit evidence of resistance.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
A great number of strategy tools are being taught in strategic management modules. These tools are available to managers for use in facilitating strategic decision making and enhancing the strategy development process in their organisations. A number of studies have been published examining which are the most popular tools; however there is little empirical evidence on how their utilisation influences the strategy process. This paper is based on a large scale international survey on the strategy development process, and seeks to examine the impact of a particular strategy tool, the Balanced Scorecard (BSC), upon the strategy process. Recently, it has been suggested that as a strategy tool, the BSC can influence all elements of the strategy process. The results of this study indicate that although there are significant differences in some elements of the strategy process between the organisations that have implemented the BSC and those that have not, the impact is not comprehensive. © 2011 Operational Research Society Ltd. All rights reserved.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
A major application of computers has been to control physical processes in which the computer is embedded within some large physical process and is required to control concurrent physical processes. The main difficulty with these systems is their event-driven characteristics, which complicate their modelling and analysis. Although a number of researchers in the process system community have approached the problems of modelling and analysis of such systems, there is still a lack of standardised software development formalisms for the system (controller) development, particular at early stage of the system design cycle. This research forms part of a larger research programme which is concerned with the development of real-time process-control systems in which software is used to control concurrent physical processes. The general objective of the research in this thesis is to investigate the use of formal techniques in the analysis of such systems at their early stages of development, with a particular bias towards an application to high speed machinery. Specifically, the research aims to generate a standardised software development formalism for real-time process-control systems, particularly for software controller synthesis. In this research, a graphical modelling formalism called Sequential Function Chart (SFC), a variant of Grafcet, is examined. SFC, which is defined in the international standard IEC1131 as a graphical description language, has been used widely in industry and has achieved an acceptable level of maturity and acceptance. A comparative study between SFC and Petri nets is presented in this thesis. To overcome identified inaccuracies in the SFC, a formal definition of the firing rules for SFC is given. To provide a framework in which SFC models can be analysed formally, an extended time-related Petri net model for SFC is proposed and the transformation method is defined. The SFC notation lacks a systematic way of synthesising system models from the real world systems. Thus a standardised approach to the development of real-time process control systems is required such that the system (software) functional requirements can be identified, captured, analysed. A rule-based approach and a method called system behaviour driven method (SBDM) are proposed as a development formalism for real-time process-control systems.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT