27 resultados para BRAIN IMAGING
Resumo:
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.
Resumo:
Magnetoencephalography (MEG) is the measurement of the magnetic fields generated outside the head by the brain’s electrical activity. The technique offers the promise of high temporal and spatial resolution. There is however an ambiguity in the inversion process of estimating what goes on inside the head from what is measured outside. Other techniques, such as functional Magnetic Resonance Imaging (fMRI) have no such inversion problems yet suffer from poorer temporal resolution. In this study we examined metrics of mutual information and linear correlation between volumetric images from the two modalities. Measures of mutual information reveal a significant, non-linear, relationship between MEG and fMRI datasets across a number of frequency bands.
Resumo:
Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.
Resumo:
Motion is an important aspect of face perception that has been largely neglected to date. Many of the established findings are based on studies that use static facial images, which do not reflect the unique temporal dynamics available from seeing a moving face. In the present thesis a set of naturalistic dynamic facial emotional expressions was purposely created and used to investigate the neural structures involved in the perception of dynamic facial expressions of emotion, with both functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend the distributed neural system for face perception (Haxby et al.,2000). Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as inferior occipital gyri and superior temporal sulci, along with coupling between superior temporal sulci and amygdalae, as well as with inferior frontal gyri. MEG and Synthetic Aperture Magnetometry (SAM) were used to examine the spatiotemporal profile of neurophysiological activity within this dynamic face perception network. SAM analysis revealed a number of regions showing differential activation to dynamic versus static faces in the distributed face network, characterised by decreases in cortical oscillatory power in the beta band, which were spatially coincident with those regions that were previously identified with fMRI. These findings support the presence of a distributed network of cortical regions that mediate the perception of dynamic facial expressions, with the fMRI data providing information on the spatial co-ordinates paralleled by the MEG data, which indicate the temporal dynamics within this network. This integrated multimodal approach offers both excellent spatial and temporal resolution, thereby providing an opportunity to explore dynamic brain activity and connectivity during face processing.
Resumo:
Objectives: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. Methods: We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. Results: The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). Conclusions: These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
Resumo:
Genetic factors are important in the etiology of bipolar disorder (BD). However, first-degree relatives of BD patients are at risk for a number of psychiatric conditions, most commonly major depressive disorder (MDD), although the majority remain well. The purpose of the present study was to identify potential brain structural correlates for risk and resilience to mood disorders in patients with BD, type I (BD-I) and their relatives. Structural magnetic resonance imaging scans were acquired from 30 patients with BD-I, 50 of their firstdegree relatives (28 had no Axis I disorder, while 14 had MDD) and 52 controls. We used voxel-based morphometry, implemented in SPM5 to identify group differences in regional gray matter volume. From the identified clusters, potential differences were further examined based on diagnostic status (BD-I patients, MDD relatives, healthy relatives, controls). Whole-brain voxel-based analysis identified group differences in the left hemisphere in the insula, cerebellum, and substantia nigra. Increased left insula volume was associated with genetic preposition to BD-I independent of clinical phenotype. In contrast, increased left substantia nigra volume was observed in those with the clinical phenotype of BD-I. Changes uniquely associated with the absence of a clinical diagnosis in BD relatives were observed in the left cerebellum. Our data suggest that in BD, genetic and phenotype-related influences on brain structure are dissociable; if replicated, these findings may help with early identification of high-risk individuals who are more likely to transition to syndromal states. Copyright © 2009 Society for Neuroscience.
Resumo:
Gender differences have been well established in verbal and spatial abilities but few studies have examined if these differences also extend into the domain of working memory in terms of behavioural differences and brain activation. The conclusions that can be drawn from these studies are not clear cut but suggest that even though gender differences might not be apparent from behavioural measures, the underlying neural substrate associated with working memory might be different in men and women. Previous research suggests activation in a network of frontal and parietal regions during working memory tasks. This study aimed to investigate gender differences in patterns of brain activation during a verbal version of the N-back working memory task, which incorporates the effects of increased demands on working memory. A total of 50 healthy subjects, aged 18 to 58 years, that were equally split by gender were recruited matched for age, levels of education and ethnicity. All subjects underwent functional magnetic resonance imaging. We found that men and women performed equally well in terms of accuracy and response times, while using similar brain regions to the same degree. Our observations indicate that verbal working memory is not affected by gender at the behavioural or neural level, and support the findings of a recent meta-analysis by Hyde ([2005]: Sex Roles 53:717-725) that gender differences are generally smaller than intra-gender differences in many cognitive domains. © 2009 Wiley-Liss, Inc.
Resumo:
Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology. © 2009 Elsevier B.V. and ECNP.
Resumo:
There have been many functional imaging studies of the brain basis of theory of mind (ToM) skills, but the findings are heterogeneous and implicate anatomical regions as far apart as orbitofrontal cortex and the inferior parietal lobe. The functional imaging studies are reviewed to determine whether the diverse findings are due to methodological factors. The studies are considered according to the paradigm employed (e.g., stories vs. cartoons and explicit vs. implicit ToM instructions), the mental state(s) investigated, and the language demands of the tasks. Methodological variability does not seem to account for the variation in findings, although this conclusion may partly reflect the relatively small number of studies. Alternatively, several distinct brain regions may be activated during ToM reasoning, forming an integrated functional "network." The imaging findings suggest that there are several "core" regions in the network-including parts of the prefrontal cortex and superior temporal sulcus-while several more "peripheral" regions may contribute to ToM reasoning in a manner contingent on relatively minor aspects of the ToM task. © 2008 Wiley-Liss, Inc.
Resumo:
Background and objective: Spinal cord stimulation (SCS) is believed to exert supraspinal effects; however, these mechanisms are still far from fully elucidated. This systematic review aims to assess existing neurophysiological and functional neuroimaging literature to reveal current knowledge regarding the effects of SCS for chronic neuropathic pain on brain activity, to identify gaps in knowledge, and to suggest directions for future research. Databases and data treatment: Electronic databases and hand-search of reference lists were employed to identify publications investigating brain activity associated with SCS in patients with chronic neuropathic pain, using neurophysiological and functional neuroimaging techniques (fMRI, PET, MEG, EEG). Studies investigating patients with SCS for chronic neuropathic pain and studying brain activity related to SCS were included. Demographic data (age, gender), study factors (imaging modality, patient diagnoses, pain area, duration of SCS at recording, stimulus used) and brain areas activated were extracted from the included studies. Results: Twenty-four studies were included. Thirteen studies used neuroelectrical imaging techniques, eight studies used haemodynamic imaging techniques, two studies employed both neuroelectrical and haemodynamic techniques separately, and one study investigated cerebral neurobiology. Conclusions: The limited available evidence regarding supraspinal mechanisms of SCS does not allow us to develop any conclusive theories. However, the studies included appear to show an inhibitory effect of SCS on somatosensory evoked potentials, as well as identifying the thalamus and anterior cingulate cortex as potential mediators of the pain experience. The lack of substantial evidence in this area highlights the need for large-scale controlled studies of this kind.
Resumo:
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Resumo:
We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.