22 resultados para BLIND EQUALIZATION
Resumo:
The phase noise enhancement due to digital dispersion equalization is investigated, which indicates that the phase noise from transmitter laser can also interact with the dispersion depending on the choice of digital dispersion compensation methods. © OSA 2012.
Resumo:
We experimentally demonstrate ∼2 dB quality (Q)-factor enhancement in terms of fiber nonlinearity compensation of 40 Gb/s 16 quadrature amplitude modulation coherent optical orthogonal frequency-division multiplexing at 2000 km, using a nonlinear equalizer (NLE) based on artificial neural networks (ANN). Nonlinearity alleviation depends on escalation of the ANN training overhead and the signal bit rate, reporting ∼4 dB Q-factor enhancement at 70 Gb/s, whereas a reduction of the number of ANN neurons annihilates the NLE performance. An enhanced performance by up to ∼2 dB in Q-factor compared to the inverse Volterra-series transfer function NLE leads to a breakthrough in the efficiency of ANN.
Resumo:
We experimentally demonstrate an effective multiplier-free blind phase noise estimation technique for CO-OFDM systems for the first time based on the statistical properties of the received symbols' phases. Our technique operates in polar coordinates, providing very low implementation complexity.
Resumo:
In this paper, we discuss in detail the performance of different blind phase noise estimation schemes for coherent optical orthogonal frequency-division multiplexing transmissions. We first derive a general model of such systems with phase noise. Based on this model, the phase cycle slip probability in blind phase noise estimation is calculated. For blind phase tracking, we present and discuss the implementation of feedback loop and digital phase tracking. We then analyze in detail the performance of a decision-direct-free blind scheme, in which only three test phases are required for phase noise compensation. We show that the decision-direct-free blind scheme is transparent to QAM formats, and can provide a similar performance to the conventional blind phase search employing 16 test phases. We also propose two novel cost functions to further reduce the complexity of this scheme.
Resumo:
A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.
Resumo:
We experimentally demonstrate 7-dB reduction of nonlinearity penalty in 40-Gb/s CO-OFDM at 2000-km using support vector machine regression-based equalization. Simulation in WDM-CO-OFDM shows up to 12-dB enhancement in Q-factor compared to linear equalization.
Resumo:
In an aging western population, a significant number of patients continue to suffer from angina once all revascularization and optimal medical treatment options are exhausted. Under experimental conditions, oral supplementation with inorganic nitrate was shown to exhibit a blood pressure-lowering effect, and has also been shown to promote angiogenesis, improve endothelial dysfunction and mitochondrial efficiency in skeletal muscle. It is unknown whether similar changes occur in cardiac muscle. In the current study, we investigate whether oral sodium nitrate treatment will improve myocardial ischemia in patients with stable angina.