24 resultados para Axial loads
Resumo:
The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The Surface Nanoscale Axial Photonics (SNAP) platform will be reviewed. This platform enables creation of miniature ultralow loss resonant photonic circuits with unprecedented subangstrom precision. The prospective slow light SNAP optofluidic sensors will be described. © 2015 OSA.
Resumo:
We consider an optical fiber with a nanoscale variation of the effective fiber radius that supports whispering gallery modes slowly propagating along the fiber, and reveal that the radius variation can be designed to support the reflectionless propagation of these modes. We show that reflectionless modulations can realize control of the transmission amplitude and temporal delay, while enabling close packing due to the absence of cross talk, in contrast to the conventional potentials.
Resumo:
We present data on the development a new type of optical fibre polariser and the characterisation of its wavelength properties. The device is fashioned using a two step process. Firstly, a standard UV long period grating (LPG) with a period of 330μm is inscribed into hydrogenated SMF-28, followed by femtosecond laser ablation of a groove parallel to the fibre axis. The UV inscribed LPGs have inherently low birefringence. However, the removal of the cladding layer parallel to the location of the LPG within the fibre core (as a result the ablation) modifies the cladding modes that couple with the LPG. Furthermore, the groove breaks the fibre symmetry introducing a non-uniform stress profile across the fibre cross section leading to significant birefringence. We show that increasing the depth of the groove increases the birefringence, and this behaviour coupled with the ability to control the wavelength location of the LPGs attenuations peaks results in a polariser able to operate at almost any wavelength and birefringence. The maximum birefringence reported here as polarisation mode splitting was approximately 39±0.1nm with a polarisation loss of 10dB. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.
Resumo:
Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time, to the best of our knowledge. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Our results pave the way to a novel ultraprecise SNAP fabrication technology based on the femtosecond laser inscription.
Resumo:
PURPOSE: To assess the correlation between changes in corneal aberrations and the 2-year change in axial length in children fitted with orthokeratology (OK) contact lenses. METHODS: Thirty-one subjects 6 to 12 years of age and with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were fitted with OK. Measurements of axial length and corneal topography were taken at regular intervals over a 2-year period. Corneal topography at baseline and after 3 and 24 months of OK lens wear was used to derive higher-order corneal aberrations (HOA) that were correlated with OK-induced axial length changes at 2 years. RESULTS: Significant changes in C3, C4, C4, root mean square (RMS) secondary astigmatism and fourth and total HOA were found with both 3 and 24 months of OK lens wear in comparison with baseline (all P0.05). Coma angle of orientation changed significantly pre-OK in comparison with 3 and 24 months post-OK as well as secondary astigmatism angle of orientation pre-OK in comparison with 24 months post-OK (all P0.05). DISCUSSION: Short-term and long-term OK lens wear induces significant changes in corneal aberrations that are not significantly correlated with changes in axial elongation after 2-years.
Resumo:
Automatic load transfer (ALT) on the 11 kV network is the process by which circuit breakers on the network are switched to form open points in order to feed load from different primary substations. Some of the potential benefits that may be gained from dynamically using ALT include maximising utilisation of existing assets, voltage regulation and reduced losses. One of the key issues, that has yet to be properly addressed in published research, is how to validate that the modelled benefits really exist. On an 11 kV distribution network where the load is continually changing and the load on each distribution substation is unlikely to be monitored - reduction in losses from moving the normally open point is particularly difficult to prove. This study proposes a method to overcome this problem and uses measured primary feeder data from two parts of the Western Power Distribution 11 kV Network under different configurations. The process of choosing the different configurations is based on a heuristic modelling method of locating minimum voltages to help reduce losses.
Resumo:
PURPOSE: To assess the relationship between short-term and long-term changes in power at different corneal locations relative to the change in central corneal power and the 2-year change in axial elongation relative to baseline in children fitted with orthokeratology contact lenses (OK). METHODS: Thirty-one white European subjects 6 to 12 years of age and with myopia −0.75 to −4.00 DS and astigmatism ≤1.00 DC were fitted with OK. Differences in refractive power 3 and 24 months post-OK in comparison with baseline and relative to the change in central corneal power were determined from corneal topography data in eight different corneal regions (i.e., N[nasal]1, N2, T[temporal]1, T2, I[inferior]1, I2, S[superior]1, S2), and correlated with OK-induced axial length changes at two years relative to baseline. RESULTS: After 2 years of OK lens wear, axial length increased by 0.48±0.18 mm (P0.05). CONCLUSION: The reduction in central corneal power and relative increase in paracentral and pericentral power induced by OK over 2 years were not significantly correlated with concurrent changes in axial length of white European children.