20 resultados para Automatic Gridding of microarray images


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence-based medicine relies on repositories of empirical research evidence that can be used to support clinical decision making for improved patient care. However, retrieving evidence from such repositories at local sites presents many challenges. This paper describes a methodological framework for automatically indexing and retrieving empirical research evidence in the form of the systematic reviews and associated studies from The Cochrane Library, where retrieved documents are specific to a patient-physician encounter and thus can be used to support evidence-based decision making at the point of care. Such an encounter is defined by three pertinent groups of concepts - diagnosis, treatment, and patient, and the framework relies on these three groups to steer indexing and retrieval of reviews and associated studies. An evaluation of the indexing and retrieval components of the proposed framework was performed using documents relevant for the pediatric asthma domain. Precision and recall values for automatic indexing of systematic reviews and associated studies were 0.93 and 0.87, and 0.81 and 0.56, respectively. Moreover, precision and recall for the retrieval of relevant systematic reviews and associated studies were 0.89 and 0.81, and 0.92 and 0.89, respectively. With minor modifications, the proposed methodological framework can be customized for other evidence repositories. © 2010 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual mental imagery is a complex process that may be influenced by the content of mental images. Neuropsychological evidence from patients with hemineglect suggests that in the imagery domain environments and objects may be represented separately and may be selectively affected by brain lesions. In the present study, we used functional magnetic resonance imaging (fMRI) to assess the possibility of neural segregation among mental images depicting parts of an object, of an environment (imagined from a first-person perspective), and of a geographical map, using both a mass univariate and a multivariate approach. Data show that different brain areas are involved in different types of mental images. Imagining an environment relies mainly on regions known to be involved in navigational skills, such as the retrosplenial complex and parahippocampal gyrus, whereas imagining a geographical map mainly requires activation of the left angular gyrus, known to be involved in the representation of categorical relations. Imagining a familiar object mainly requires activation of parietal areas involved in visual space analysis in both the imagery and the perceptual domain. We also found that the pattern of activity in most of these areas specifically codes for the spatial arrangement of the parts of the mental image. Our results clearly demonstrate a functional neural segregation for different contents of mental images and suggest that visuospatial information is coded by different patterns of activity in brain areas involved in visual mental imagery. Hum Brain Mapp 36:945-958, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoroscopic images exhibit severe signal-dependent quantum noise, due to the reduced X-ray dose involved in image formation, that is generally modelled as Poisson-distributed. However, image gray-level transformations, commonly applied by fluoroscopic device to enhance contrast, modify the noise statistics and the relationship between image noise variance and expected pixel intensity. Image denoising is essential to improve quality of fluoroscopic images and their clinical information content. Simple average filters are commonly employed in real-time processing, but they tend to blur edges and details. An extensive comparison of advanced denoising algorithms specifically designed for both signal-dependent noise (AAS, BM3Dc, HHM, TLS) and independent additive noise (AV, BM3D, K-SVD) was presented. Simulated test images degraded by various levels of Poisson quantum noise and real clinical fluoroscopic images were considered. Typical gray-level transformations (e.g. white compression) were also applied in order to evaluate their effect on the denoising algorithms. Performances of the algorithms were evaluated in terms of peak-signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square error (MSE), structural similarity index (SSIM) and computational time. On average, the filters designed for signal-dependent noise provided better image restorations than those assuming additive white Gaussian noise (AWGN). Collaborative denoising strategy was found to be the most effective in denoising of both simulated and real data, also in the presence of image gray-level transformations. White compression, by inherently reducing the greater noise variance of brighter pixels, appeared to support denoising algorithms in performing more effectively. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imagining a familiar environment is different from imagining an environmental map and clinical evidence demonstrated the existence of double dissociations in brain-damaged patients due to the contents of mental images. Here, we assessed a large sample of young and old participants by considering their ability to generate different kinds of mental images, namely, buildings or common objects. As buildings are environmental stimuli that have an important role in human navigation, we expected that elderly participants would have greater difficulty in generating images of buildings than common objects. We found that young and older participants differed in generating both buildings and common objects. For young participants there were no differences between buildings and common objects, but older participants found easier to generate common objects than buildings. Buildings are a special type of visual stimuli because in urban environments they are commonly used as landmarks for navigational purposes. Considering that topographical orientation is one of the abilities mostly affected in normal and pathological aging, the present data throw some light on the impaired processes underlying human navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how the angular uncertainties can be determined for a rotary-laser automatic theodolite of the type used in (indoor-GPS) iGPS networks. Initially, the fundamental physics of the rotating head device is used to propagate uncertainties using Monte Carlo simulation. This theoretical element of the study shows how the angular uncertainty is affected by internal parameters, the actual values of which are estimated. Experiments are then carried out to determine the actual uncertainty in the azimuth angle. Results are presented that show that uncertainty decreases with sampling duration. Other significant findings are that uncertainty is relatively constant throughout the working volume and that the uncertainty value is not dependent on the size of the reference angle. © 2009 IMechE.